ФГБ ОУ ВПО «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Кафедра «Математика»

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ
Учебное пособие

МОСКВА – 2011
ФГБ ОУ ВПО «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Кафедра «Математика»

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ
Под редакцией Кочневой Л.Ф. и Хаханяна В.Х.

Рекомендовано редакционно-издательским советом университета в качестве учебного пособия для студентов специальности АКБ, УПП, ЭЭТ и ЭТБ.

Москва - 2011
УДК 518.2

К 38

Исследование операций. Под редакцией доц. Л.Ф. Кочневой и проф. В.Х. Хаханяна.

В пособии даётся изложение ряда разделов исследования операций, приводятся
алгоритмы решения задач линейного, двойственного, целочисленного и динамического
программирований, теории игр и теории очередей. Пособие рассчитано на студентов
специальностей АКБ, УПП, ЭЭТ и ЭТБ и соответствует программам читаемых по данным
специальностям курсов. Пособие содержит большое количество задач для
самостоятельного решения.

Коллектив авторов: д.ф.м.н. Рогов В.-Б.К. (раздел 1), к.ф.м.н. Липкина З.С. (раздел.2), ст.
пр. Гарслян А.Е.(раздел.3), ст. пр. Тюленева М.В. (разделы.4, 5), к.т.н. Кочева Л.Ф.
(раздел.6), к.ф.м.н. Милевский А.С. (раздел.7).

Рецензенты:
1) к.ф.м.н., доц. кафедры «Математический анализ» механико-математического
факультета МГУ имени М.В.Ломоносова Е.С. Соболева.
2) кандидат физико-математических наук, заведующий кафедрой «Вычислительная
математика» МИИТ доц. В.Н. Деснянский.

© ФГБ ОУ ВПО «Московский государственный университет
путей сообщения», 2011
ВВЕДЕНИЕ __ 5

1. ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. _____________________________ 6
 1.1 Задачи линейного программирования (ЗЛП) ___________________________ 6
 1.2 Геометрический смысл ЗЛП и геометрический способ ее решения. ________________ 7
 1.3 Симплекс-метод. ___ 12
 1.4 Симплекс-таблица. ___ 14
 1.5 М-метод ___________________________ 16
 1.6 Двойственные задачи. __ 23

2. ТРАНСПОРТНАЯ ЗАДАЧА. ___ 30

3. ЗАДАЧА ЦЕЛОЧИСЛЕННОГО ПРОГРАММИРОВАНИЯ ____________ 63
 3.1 Геометрическая интерпретация задачи целочисленного программирования ____________ 63
 3.2 Общая постановка канонической задачи линейного целочисленного программирования ____ 64
 3.3 Метод Гомори ___ 65

4. ЗАДАЧА ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ. ____________ 73
 4.1 Постановка задачи ___ 73
 4.2 Функциональное уравнение Беллмана __ 74
 4.3 Решение экономических задач методом динамического программирования ___________ 76

5. ПРИМЕНЕНИЕ ТЕОРИИ ГРАФОВ К РЕШЕНИЮ ЗАДАЧ ____________ 84
 5.1 Задача поиска кратчайшего пути. __ 84
 5.2 Метод ветвей и границ __ 86
 5.3 Задача о назначениях __ 91

6. ЭЛЕМЕНТЫ ТЕОРИИ ИГР __ 100
 6.1 Основные понятия __ 100
 6.2 Матричные игры __ 100
 6.3 Равновесная ситуация ___ 101
 6.4 Смешанные стратегии ___ 103
 6.5 Правило доминирования __ 111
 6.6 Игры с природой __ 116
7. МАРКОВСКИЕ ЦЕПИ .. 122
 7.1 Марковские цепи с конечным множеством состояний и дискретным временем 122
 7.2 Марковские цепи с конечным множеством состояний и непрерывным временем 130
 7.3 Системы массового обслуживания .. 135
 7.4 Задачи. .. 140

ЛИТЕРАТУРА ... 143
Введение
Теоретические вопросы изложены достаточно подробно и, в основном, сопровождаются доказательствами. Приведены формулировки и решения основных задач.
Отличием данного пособия является большое количество задач к каждому разделу как для использования на практических занятиях, так и для организации самостоятельной работы. В учебном пособии использовались методические работы проф. Карнелевича Ф.И. и проф. Куликова В.С.
1. Линейное программирование.

1.1 Задачи линейного программирования (ЗЛП)

Рассмотрим систему линейных уравнений или неравенств

\[
\begin{align*}
 a_{11}x_1 + \cdots + a_{1n}x_n &= b_1 \\
 \vdots & \cdots \vdots \cdots \vdots \\
 a_{k+1}x_1 + \cdots + a_{kn}x_n &= b_k \\
 \vdots & \cdots \vdots \cdots \vdots \\
 a_{m1}x_1 + \cdots + a_{mn}x_n &\leq b_m
\end{align*}
\]

(1.1)

целевая функция (линейная форма, план)

\[F(x) = c_0 + c_1x_1 + \cdots + c_nx_n \] (1.2)

и условия неотрицательности переменных (быть может, не всех)

\[x_j \geq 0. \] (1.3)

Требуется среди всех решений системы ограничений (1.1),(1.3) найти такое, при котором функция (1.2) принимает оптимальное (минимальное или максимальное) значение. Такую задачу будем называть общей задачей линейного программирования.

Задачу, в которой \(k = m, j = 1, \ldots, n \) и целевая функция минимизируется, будем называть основной задачей линейного программирования.

\[AX = B, \quad X \geq 0, \quad F(x) = c_0 + CX \to \text{min}, \] (1.4)

где

\[A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \quad C = \begin{pmatrix} c_1 & \cdots & c_m \end{pmatrix}. \]

Задачу, в которой \(k = 0, j = 1, \ldots, n \) и целевая функция максимизируется - канонической задачей линейного программирования.

\[AX \leq B, \quad X \geq 0, \quad F(x) = c_0 + CX \to \text{max} \] (1.5)

Определение 1.1. Две ЗЛП назовем эквивалентными, если решение одной из них является решением другой.

Предложение 1.1. Задачи (1.4) и (1.5) эквивалентны. Всегда можно перейти от одной из них к другой.

Доказательство. Пусть имеется задача (1.4). Тогда общее решение системы уравнений есть выражение базисных неизвестных \(X_b \) через свободные \(X_c \).

\[X_b = \alpha + A_cX_c \geq 0, \quad F(x) = y_0 + GX_c. \]

Таким образом, имеем

\[-A_cX_c \leq \alpha, \quad X_c \geq 0, \quad -F(x) \to \text{max}, \]

t.e. задачу (1.5).

Пусть теперь имеем задачу (1.5). Введем новые переменные

\[x_j = b_j - a_jx_j \geq 0, \quad l = 1, \ldots, m. \]

Тогда получим

\[AX = B, \quad X \geq 0, \quad -F(x) \to \text{min}, \]

t.e. задачу (1.4).
1.2 Геометрический смысл ЗЛП и геометрический способ ее решения.

Определение 2.1. Множество D точек n-мерного пространства называется выпуклым, если для любых точек \(A(x_1,...,x_n) \) и \(B(y_1,...,y_n) \) из D отрезок AB:
\[tx_1 + (1-t)y_1, \quad t \in [0,1] \] принадлежит множеству D.

Очевидно, пересечение выпуклых множеств является выпуклым множеством.

Пусть \(X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \) - n-мерный вектор-столбец и \(\vec{a} \) мерная вектор-строка.

Определение 2.2. Гиперплоскостью в n-мерном пространстве называется совокупность точек, координаты которых удовлетворяют уравнению
\[a_1x_1 + \cdots + a_nx_n - b = 0 \]
или
\[\vec{a}X - b = 0. \]
Вектор \(\vec{a} \) играет роль нормального вектора.

Всякая гиперплоскость делит n-мерное пространство на два полупространства, каждое из которых задается линейным неравенством
\[\vec{a}X - b \leq 0 \quad (2.1) \]
или
\[\vec{a}X - b \geq 0. \]
Система линейных неравенств, очевидно, определяет в n-мерном пространстве многогранную область. Мы будем считать, что система линейных неравенств имеет решение, т.е. многогранная область не пуста. Так как полупространство выпукло, многогранная область (2.1) является выпуклым множеством.

Определение 2.3. Точка \(X_0 \) множества D называется крайней (опорной) точкой, если существует отрезок, для которого точка \(X_0 \) является внутренней и все точки которого за исключением точки \(X_0 \) не принадлежат множеству D.

Пусть у нас имеется КЗЛП (1.5). Это значит, мы имеем многогранную область, задаваемую системой линейных неравенств, и множество параллельных гиперплоскостей, определяемых целевой функцией. Нормальный вектор \(\vec{n}(a_1,...,a_n) \) указывает направление в котором нужно двигаться для увеличения значения целевой функции. Пересечение гиперплоскости с многогранной областью - это совокупность точек, координаты которых удовлетворяют системе ограничений и для которых целевая функция постоянна. Будем теперь двигать гиперплоскость в направлении нормального вектора. Здесь возможны два случая: первый - можно двигаться, сколько угодно увеличивая целевую функцию и второй - двигаться до тех пор, пока существует хотя бы одна общая точка у многогранной области и гиперплоскости. В первом случае задача решений не имеет - целевая функция не ограничена сверху. Во втором случае мы получаем оптимальное решение. Имеет место следующая

Теорема 2.1. Если КЗЛП имеет решение в точке \(X(x_1,...,x_n) \), то эта точка является крайней точкой множества D.

Пример 2.1.
\[
\begin{align*}
3x_1 - 2x_2 & \leq 9 \\
2x_1 + 5x_2 & \leq 25, \\
x_{1,2} & \geq 0,
\end{align*}
\]
\[F(x) = 3x_1 + 2x_2 \rightarrow \max. \]
См. рис. 2.1. D - многогранная область (четыреугольник $OABC$), все точки которой имеют координаты, удовлетворяющие системе ограничений. $\vec{n}(3,2)$ - нормальный вектор семейства параллельных гиперплоскостей (прямых), определяемых целевой функцией. L - предельное положение гиперплоскости (прямой), определяющее оптимальное решение $X(5,3)$, $F_{\text{max}} = 21$.

Рис. 2.1.

Пример 2.2.

\[
\begin{aligned}
& x_1 - 2x_2 \leq 2 \\
& -3x_1 + 2x_2 \leq 2 \\
& -x_1 + 2x_2 \leq 4, \\
& x_{1,2} \geq 0,
\end{aligned}
\]

$F(x) = x_1 + x_2 \to \text{max}.$

См. рис. 2.2. D - неограниченная многогранная область, все точки которой имеют координаты, удовлетворяющие системе ограничений. $\vec{n}(1,1)$ - нормальный вектор семейства параллельных гиперплоскостей (прямых), определяемых целевой функцией. Очевидно, гиперплоскость можно двигать в направлении нормального вектора неограниченно. Значит задача оптимального решения не имеет.

Рис. 2.2.
Индивидуальные задания. Решить графически.

Вариант 1.
\[\begin{aligned}
&x_2 \leq 6, \\
&x_1 + x_2 \leq 10, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \to \max \\
&x_1 - x_2 \leq 6
\end{aligned} \]

Вариант 2.
\[\begin{aligned}
&x_2 \leq 5, \\
&x_1 + x_2 \leq 10, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \to \max \\
&x_1 - x_2 \leq 6
\end{aligned} \]

Вариант 3.
\[\begin{aligned}
&x_2 \leq 4, \\
&x_1 + x_2 \leq 10, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \to \max \\
&x_1 - x_2 \leq 6
\end{aligned} \]

Вариант 4.
\[\begin{aligned}
&x_2 \leq 3, \\
&x_1 + x_2 \leq 10, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \to \max \\
&x_1 - x_2 \leq 6
\end{aligned} \]

Вариант 5.
\[\begin{aligned}
&x_2 \leq 6, \\
&x_1 + x_2 \leq 9, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \to \max \\
&x_1 - x_2 \leq 6
\end{aligned} \]

Вариант 6.
\[\begin{aligned}
&x_2 \leq 5, \\
&x_1 + x_2 \leq 9, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \to \max \\
&x_1 - x_2 \leq 6
\end{aligned} \]

Вариант 7.
\[\begin{aligned}
&x_2 \leq 4, \\
&x_1 + x_2 \leq 9, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \to \max \\
&x_1 - x_2 \leq 6
\end{aligned} \]

Вариант 8.
\[\begin{aligned}
&x_2 \leq 3, \\
&x_1 + x_2 \leq 9, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \to \max \\
&x_1 - x_2 \leq 6
\end{aligned} \]

Вариант 9.
\[\begin{aligned}
&x_2 \leq 6, \\
&x_1 + x_2 \leq 8, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \to \max \\
&x_1 - x_2 \leq 6
\end{aligned} \]
Вариант 10.
\[
\begin{align*}
 & x_2 \leq 5 \\
 & x_1 + x_2 \leq 8, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 11.
\[
\begin{align*}
 & x_2 \leq 4 \\
 & x_1 + x_2 \leq 8, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 12.
\[
\begin{align*}
 & x_2 \leq 3 \\
 & x_1 + x_2 \leq 8, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 13.
\[
\begin{align*}
 & x_2 \leq 6 \\
 & x_1 + x_2 \leq 7, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 14.
\[
\begin{align*}
 & x_2 \leq 5 \\
 & x_1 + x_2 \leq 7, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 15.
\[
\begin{align*}
 & x_2 \leq 4 \\
 & x_1 + x_2 \leq 7, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 16.
\[
\begin{align*}
 & x_2 \leq 3 \\
 & x_1 + x_2 \leq 7, \ x_{1,2} \geq 0, \quad F(x) = 1 + 3x_1 + 2x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 17.
\[
\begin{align*}
 & x_2 \leq 6 \\
 & x_1 + x_2 \leq 10, \ x_{1,2} \geq 0, \quad F(x) = 1 + 2x_1 + 3x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 18.
\[
\begin{align*}
 & x_2 \leq 5 \\
 & x_1 + x_2 \leq 10, \ x_{1,2} \geq 0, \quad F(x) = 1 + 2x_1 + 3x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 19
\[
\begin{align*}
 & x_2 \leq 4 \\
 & x_1 + x_2 \leq 10, \ x_{1,2} \geq 0, \quad F(x) = 1 + 2x_1 + 3x_2 \rightarrow \max \\
 & x_1 - x_2 \leq 6
\end{align*}
\]
Вариант 20.
\begin{align*}
\begin{cases}
 x_2 \leq 3 \\
 x_1 + x_2 \leq 10, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}

Вариант 21.
\begin{align*}
\begin{cases}
 x_2 \leq 6 \\
 x_1 + x_2 \leq 9, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}

Вариант 22.
\begin{align*}
\begin{cases}
 x_2 \leq 5 \\
 x_1 + x_2 \leq 9, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}

Вариант 23.
\begin{align*}
\begin{cases}
 x_2 \leq 4 \\
 x_1 + x_2 \leq 9, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}

Вариант 24.
\begin{align*}
\begin{cases}
 x_2 \leq 3 \\
 x_1 + x_2 \leq 9, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}

Вариант 25.
\begin{align*}
\begin{cases}
 x_2 \leq 6 \\
 x_1 + x_2 \leq 8, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}

Вариант 26.
\begin{align*}
\begin{cases}
 x_2 \leq 5 \\
 x_1 + x_2 \leq 8, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}

Вариант 27.
\begin{align*}
\begin{cases}
 x_2 \leq 4 \\
 x_1 + x_2 \leq 8, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}

Вариант 28.
\begin{align*}
\begin{cases}
 x_2 \leq 3 \\
 x_1 + x_2 \leq 8, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}

Вариант 29.
\begin{align*}
\begin{cases}
 x_2 \leq 6 \\
 x_1 + x_2 \leq 7, \; x_{1,2} \geq 0, \\
 x_1 - x_2 \leq 6
\end{cases}
F(x) = 1 + 2x_1 + 3x_2 \to \max
\end{align*}
Вариант 30.
\[
\begin{align*}
 x_2 &\leq 5 \\
 x_1 + x_2 &\leq 7, \quad x_{1,2} \geq 0, \quad F(x) = 1 + 2x_1 + 3x_2 \rightarrow \max \\
 x_1 - x_2 &\leq 6
\end{align*}
\]
Вариант 31.
\[
\begin{align*}
 x_2 &\leq 4 \\
 x_1 + x_2 &\leq 7, \quad x_{1,2} \geq 0, \quad F(x) = 1 + 2x_1 + 3x_2 \rightarrow \max \\
 x_1 - x_2 &\leq 6
\end{align*}
\]
Вариант 32.
\[
\begin{align*}
 x_2 &\leq 3 \\
 x_1 + x_2 &\leq 7, \quad x_{1,2} \geq 0, \quad F(x) = 1 + 2x_1 + 3x_2 \rightarrow \max \\
 x_1 - x_2 &\leq 6
\end{align*}
\]

1.3 Симплекс-метод.
В этом пункте мы будем рассматривать систему уравнений \(AX = B, \) которая имеет хотя бы одно решение. Т.е. ранг матрицы \(A \) равен рангу расширенной матрицы \(\overline{A}. \)
Если \(\text{rank} A = n, \) где \(n - \) число неизвестных, то мы имеем единственное решение, и, следовательно, задачи линейного программирования нет. Поэтому мы будем рассматривать случай \(r < n, \) т.е. есть свободные неизвестные.

Определение 3.1. Решение системы уравнений называется базисным, если свободные неизвестные равны нулю.

Определение 3.2. Базисное решение системы уравнений называется допустимым, если базисные неизвестные неотрицательны.

Симплекс-метод заключается в рациональном переборе допустимых базисных решений, т.е. таком, что при каждом шаге значение целевой функции по крайней мере не увеличивается.

Пусть мы имеем задачу (1.4) и пусть допустимое базисное решение системы уравнений
\[
\begin{align*}
 x_i &= \beta_i - (\alpha_{i,r+1}x_{r+1} + \ldots + \alpha_{i,j}x_j + \ldots + \alpha_{i,n}x_n) \\
 x_j &= \beta_j - (\alpha_{r+1,j}x_{r+1} + \ldots + \alpha_{j,j}x_j + \ldots + \alpha_{m,j}x_m)
\end{align*}
\]
где \(x_1, \ldots, x_r - \) базисные неизвестные, а \(x_{r+1}, \ldots, x_n - \) свободные неизвестные.

Целевая функция
\[
F = \gamma - (\gamma_{r+1}x_{r+1} + \ldots + \gamma_jx_j + \ldots + \gamma_nx_n).
\]
(3.2) (3.1) и (3.2) будем называть стандартной формой записи допустимого базисного решения. Ввиду условия неотрицательности неизвестных свободные неизвестные мы можем только увеличивать. Если в выражении (3.2) есть свободная неизвестная, например, \(x_j \) с положительным коэффициентом \(\gamma_j > 0, \) то, увеличивая эту неизвестную, мы можем уменьшить целевую функцию. Если такой неизвестной нет, то целевую функцию уменьшить нельзя, т.е. решение уже оптимально.
При увеличении \(x_j \) базисные неизвестные увеличиваются или уменьшаются в зависимости от знака коэффициента \(\alpha_{ij} \) в уравнениях системы (3.1). Нас интересуют только те базисные неизвестные, которые уменьшаются, т.к. в силу условия неотрицательности они могут уменьшаться только до нуля. Т.о. мы рассматриваем только
\(\alpha_j > 0 \). Если таких коэффициентов нет, то целевую функцию можно уменьшить неограниченно, т.е. задача решения не имеет, т.к. целевая функция не ограничена снизу.
Среди положительных коэффициентов \(\alpha_j \) выбираем тот, для которого отношение \(\frac{\beta_j}{\alpha_j} \) минимально, т.к. именно эта базисная неизвестная раньше всех обращается в нуль.
Коэффициент \(\alpha_j \) при выбранных свободной и базисной неизвестных назовем генеральным (разрешающим) элементом, столбец коэффициентов при выбранной свободной неизвестной - генеральным (разрешающим) столбцом, а строку коэффициентов при выбранной базисной неизвестной - генеральной (разрешающей) строкой. Все указанные коэффициенты \(\alpha_j \) рассматриваются с теми знаками, с которыми они входят в скобках.
Теперь поменяем ролями выбранные неизвестные: пусть \(x_j \) будет новой базисной неизвестной, а \(x_i \) - новой свободной неизвестной. Из соответствующего уравнения системы (3.1)

\[
x_j = \frac{\beta_j}{\alpha_j} + \left(\frac{\alpha_{jr} x_{r+1} + \cdots + \alpha_{in} x_n}{\alpha_j} \right) \quad (3.3)
\]

Подставим теперь это выражение в остальные уравнения системы (3.1) и в выражение для целевой функции (3.2). Опуская очевидные по громоздкости выкладки, получим

\[
\begin{align*}
x_i &= \frac{\beta_i \alpha_j - \alpha_i \beta_j}{\alpha_j} + \left(\frac{\alpha_{ir} x_{r+1} + \cdots + \alpha_{in} x_n}{\alpha_j} \right), \quad (3.3) \\
x_r &= \frac{\beta_r \alpha_j - \alpha_r \beta_j}{\alpha_j} + \left(\frac{\alpha_{jr} x_{r+1} + \cdots + \alpha_{in} x_n}{\alpha_j} \right) \\
F(x) &= \frac{\gamma_0 \alpha_j - \gamma_i \beta_i}{\alpha_j} + \left(\frac{\gamma_{ir} x_{r+1} + \cdots + \gamma_{in} x_n}{\alpha_j} \right).
\end{align*}
\]

Т.о. мы получили новое допустимое базисное решение системы (1.4), причем значение целевой функции по крайней мере не увеличилось. Все выполненные построения образуют один шаг симплекс-метода.
Так как каждое допустимое базисное решение в геометрической интерпретации соответствует вершине многогранной области (если от уравнений перейти к неравенствам), а число вершин конечно, то рано или поздно мы получим ситуацию, в которой нельзя выбрать генеральный элемент. Т.е. нельзя выбрать или генеральный столбец или генеральную строку.

В первом случае это означает, что с учетом знака «»”, вынесенного за скобки, все свободные неизвестные или не входят в выражение целевой функции, или входят со знаком «+»). Это значит, что целевую функцию уменьшить нельзя и, следовательно, решение оптимально.

Во втором случае это означает, что с учетом знака «- », вынесенного за скобки выбранная свободная неизвестная или не входит в выражения базисных неизвестных, или входят со знаком «+»). Это значит, что нет базисных неизвестных, которые уменьшаются при увеличении выбранной свободной неизвестной, и, следовательно, нет ограничений для уменьшения целевой функции. Т.е. целевая функция не ограничена снизу.
Пример 3.1.
\[
\begin{align*}
3x_1 - 2x_2 + x_3 &= 9 \\
2x_1 + 5x_2 + x_4 &= 25 \\
x_i &\geq 0, \quad i = 1,2,3,4,
\end{align*}
\]
\[
F(x) = -3x_1 - 2x_2 \rightarrow \min
\]
В качестве исходного допустимого базисного решения возьмем
\[
\begin{align*}
x_3 &= 9 - (3x_1 - 2x_2) \\
x_4 &= 25 - (2x_1 + 5x_2),
\end{align*}
\]
или \(X_1 (0,0,9,25), \quad F_1 = 0. \)

Очевидно, целевая функция будет уменьшаться при увеличении свободной неизвестной \(x_1. \) При этом и \(x_3 \) и \(x_4 \) уменьшается, но раньше обращается в нуль \(x_3. \) Поэтому поменяем ролями \(x_1 \) и \(x_3. \) Т.е. свободными неизвестными сделаем \(x_2 \) и \(x_3. \)

Таким образом, получим новое допустимое базисное решение
\[
\begin{align*}
x_1 &= 3 - (-\frac{3}{5} x_2 + \frac{1}{3} x_3) \\
x_4 &= 19 - (-\frac{10}{3} x_2 - \frac{2}{3} x_3),
\end{align*}
\]
\[
x_i \geq 0, \quad i = 1,2,3,4,
\]
\[
F(x) = -9 - (4x_2 - x_1)
\]
или \(X_2 (3,0,0,19), \quad F_2 = -9. \)

Теперь целевая функция будет уменьшаться при увеличении свободной неизвестной \(x_2. \)

При этом базисная неизвестная \(x_4 \) будет уменьшаться. Поэтому поменяем ролями \(x_2 \) и \(x_4. \) Таким образом, мы получаем новое базисное решение
\[
\begin{align*}
x_1 &= 5 - (\frac{5}{19} x_3 + \frac{2}{19} x_4) \\
x_2 &= 3 - (-\frac{5}{19} x_3 + \frac{2}{19} x_4),
\end{align*}
\]
\[
x_i \geq 0, \quad i = 1,2,3,4,
\]
\[
F(x) = -21 - (-\frac{1}{19} x_3 - \frac{3}{19} x_4)
\]
или \(X_3 (5,3,0,0), \quad F_3 = -21. \)

Теперь свободных неизвестных, входящих в выражение целевой функции со знаком «-» нет, т.е. нельзя выбрать генеральный столбец. Значит это решение оптимально.

1.4 Симплекс-таблица.
При переходе от одного допустимого базисного решения к другому удобно пользоваться так называемой симплекс-таблицей.

<table>
<thead>
<tr>
<th>член</th>
<th>(\gamma_0)</th>
<th>(\gamma_{r+1})</th>
<th>...</th>
<th>(\gamma_j)</th>
<th>...</th>
<th>(\gamma_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_j)</td>
<td>(\beta_j)</td>
<td>(a_{ir+1})</td>
<td>...</td>
<td>(a_{ij})</td>
<td>...</td>
<td>(a_{in})</td>
</tr>
</tbody>
</table>
| ... | ... | ... | ... | ... | ... | ...
| \(x_i \) | \(\beta_i \) | \(a_{ir+1} \) | ... | \(a_{ij} \) | ... | \(a_{in} \) |
| ... | ... | ... | ... | ... | ... | ...
| \(x_r \) | \(\beta_r \) | \(a_{rr+1} \) | ... | \(a_{rj} \) | ... | \(a_{rn} \) |
Правило выбора генерального столбца: в строке F не считая свободного члена выбрать любое положительное число. Если положительных чисел нет, решение оптимально. Пусть $\gamma_j > 0$.

Правило выбора генеральной строки: в столбце x_j среди положительных чисел, не считая строки F, выбрать то, для которого отношение к нему свободного члена $\frac{\beta_j}{\alpha_j}$ минимально. Выбор генерального столбца и генеральной строки однозначно определяет генеральный элемент α_{ij}.

Переход к новому допустимому базисному решению осуществляется путем пересчета симплекс-таблицы. Формулы для пересчета вытекают из (3.3) и (3.4).

Правила пересчета симплекс-таблицы:
1. x_i и x_j меняются местами.
2. На месте генерального элемента пишется величина ему обратная.
3. Все элементы генеральной строки (кроме генерального элемента) делятся на генеральный элемент.
4. Все элементы генерального столбца (кроме генерального элемента) делятся на генеральный элемент и берутся с противоположным знаком.
5. Все остальные элементы пересчитываются по правилу прямоугольника

$$\bar{y}_0 = \frac{\gamma_j \alpha_{ij} - \gamma_i \beta_j}{\alpha_{ij}}, \quad \bar{y}_k = \frac{\gamma_k \alpha_{ij} - \gamma_i \alpha_{ik}}{\alpha_{ij}},$$

$$\bar{\beta}_j = \frac{\beta_i \alpha_{ij} - \alpha_{ij} \beta_j}{\alpha_{ij}}, \quad \bar{\alpha}_{ik} = \frac{\alpha_{ik} \alpha_{ij} - \alpha_{ij} \alpha_{ik}}{\alpha_{ij}}.$$

Порядок работы по симплекс-методу:
1. Найти исходное допустимое базисное решение
2. Выбрать генеральный столбец. Если его выбрать нельзя, решение оптимально
3. Выбрать генеральную строку. Если ее выбрать нельзя, задача решений не имеет
4. Пересчитать симплекс-таблицу
5. См. пункт 2.

Пример 4.1.

Рассмотрим пример 3.1. Для исходного допустимого базисного решения симплекс-таблица имеет вид 11

<table>
<thead>
<tr>
<th>Св. чл.</th>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>x_4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>x_3</td>
<td>25</td>
<td>2</td>
</tr>
</tbody>
</table>

В качестве генерального столбца возьмем столбец x_4, а в качестве генеральной строки - строку x_3

<table>
<thead>
<tr>
<th>Св. чл.</th>
<th>x_3</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>-9</td>
<td>-1</td>
</tr>
<tr>
<td>x_4</td>
<td>3</td>
<td>1/3</td>
</tr>
<tr>
<td>x_3</td>
<td>19</td>
<td>-2/3</td>
</tr>
</tbody>
</table>
В качестве генерального столбца возьмем столбец \(x_2 \), а в качестве генеральной строки - строку \(x_4 \)

<table>
<thead>
<tr>
<th>Св. чл.</th>
<th>(F)</th>
<th>(x_3)</th>
<th>(x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-21</td>
<td>-1/19</td>
<td>-3/19</td>
</tr>
<tr>
<td>(x_1)</td>
<td>5</td>
<td>5/19</td>
<td>2/19</td>
</tr>
<tr>
<td>(x_2)</td>
<td>3</td>
<td>-3/19</td>
<td>3/19</td>
</tr>
</tbody>
</table>

Далее генеральный столбец выбрать нельзя, значит решение оптимально.

\(X(5,3,0,0) \), \(F_{mn} = -21 \).

1.5 М-метод

Пусть требуется решить КЗЛП (1.4). При решении этой задачи возникает трудность нахождения исходного допустимого базисного решения. Для того, чтобы обойти эту трудность воспользуемся так называемым \(M \)-методом.

Запишем систему уравнений в виде

\[
\begin{align*}
 b_1 - (a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n) &= 0 \\
 b_2 - (a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n) &= 0 \\
 \vdots & \quad \ddots \\
 b_m - (a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n) &= 0
\end{align*}
\]

(5.1)

причем будем считать, что \(b_i \geq 0 \). Наряду с исходной КЗЛП рассмотрим вспомогательную КЗЛП

\[
\begin{align*}
 b_1 - (a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n) &= \xi_1 \\
 b_2 - (a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n) &= \xi_2 \\
 \vdots & \quad \ddots \\
 b_m - (a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n) &= \xi_m
\end{align*}
\]

(5.2)

В качестве целевой функции возьмем

\[G = c_0 + c_1x_1 + c_2x_2 + \ldots + c_nx_n + M (\xi_1 + \xi_2 + \ldots + \xi_m) \rightarrow \min \]

где \(M \) - некоторое достаточно большое число. Эту КЗЛП назовем \(M \)-задачей.

Очевидно, (5.2), (5.3) уже являются стандартной записью исходного допустимого базисного решения, так как \(x_j, j=1,\ldots,n \), свободные неизвестные, а \(\xi_i, i=1,\ldots,m \), базисные неизвестные, причем \(\xi_i = b_i \geq 0 \), \(i=1,\ldots,m \), по условию.

Их иногда называют искусственным базисом.

При решении М-задачи симплекс-методом могут быть два варианта:

1. М-задача имеет решение.
2. М-задача не имеет решения.

В соответствии с этими вариантами рассмотрим две теоремы.

Теорема 5.1. Пусть \(\bar{x}^0 = (x_1^0,\ldots,x_n^0) \), \(\bar{\xi}^0 = (\xi_1^0,\ldots,\xi_m^0) \) - решение М-задачи, тогда

1) если все значения \(\xi_i^0, i=1,\ldots,m \), равны нулю, то набор \(x_j^0, j=1,\ldots,n \), является оптимальным решением исходной задачи,
2) если хотя бы одно из значений \(\xi_i^0 \) не обращается в нуль, то система ограничений исходной задачи противоречива.
Доказательство.1) Так как набор \bar{x}^0, \bar{z}^0 является оптимальным решением М-задачи, величины $x^0_j, i = 1, \ldots, n$, удовлетворяют ограничениям (5.2). Поэтому величины $x^0_j, j = 1, \ldots, n$, удовлетворяют системе (5.1). Решение x' системы (5.1) можно рассматривать как решение (5.2), в котором значения переменных $\bar{z}'_i, i = 1, \ldots, m$, равны нулю. Из условия оптимальности решения М-задачи $G(\bar{x}^0, \bar{z}^0) \leq G(\bar{x}'_i, \bar{z}'_i)$. (5.4)

В то же время так как все $\bar{z}'_i = 0$ и $\bar{z}^0_i = 0, i = 1, \ldots, m$, то $S(\bar{z}^0_i) = \bar{z}^0_1 + \ldots + \bar{z}^0_m = 0$ и $S(\bar{z}'_i) = \bar{z}'_1 + \ldots + \bar{z}'_m = 0$. Следовательно, $G(\bar{x}^0, \bar{z}^0) = F(\bar{x}^0) + MS(\bar{z}^0) = F(\bar{x}^0)$ и $G(\bar{x}', \bar{z}') = F(\bar{x}') + MS(\bar{z}') = F(\bar{x}')$.

Поэтому из (5.4) следует $F(\bar{x}^0) \leq F(\bar{x}')$, т.e. оптимальность решения исходной задачи.

2) Предположим противное, т.e. существует неотрицательное решение системы (5.1). Тогда его можно рассматривать как решение системы (5.2), в котором $\bar{z}'_i, i = 1, \ldots, m$, обращающиеся в нуль. Значит $S(\bar{z}^0) = \bar{z}^0_1 + \ldots + \bar{z}^0_m = 0$ и $G(\bar{x}', \bar{z}') = F(\bar{x}')$.

Так как \bar{x}^0, \bar{z}^0 - оптимальное решение М-задачи, $G(\bar{x}^0, \bar{z}^0) \leq G(\bar{x}', \bar{z}')$. Следовательно, $F(\bar{x}^0) + MS(\bar{z}^0) \leq F(\bar{x}')$. (5.5)

Имеем

$S(\bar{z}^0) = \bar{z}^0_1 + \bar{z}^0_2 + \ldots + \bar{z}^0_m > 0$,

tак как все $\bar{z}^0_i \geq 0$ и по крайней мере одна из этих величин не обращается в нуль.

Неравенство (5.5) обязано выполняться при всех сколь угодно больших значениях M. Но это невозможно, так как правая часть не зависит от M, а левая - стремиться к бесконечности при $M \to \infty$. Полученное противоречие доказывает второе утверждение теоремы.

Замечание 5.1. Если М-задача имеет оптимальное решение, то все $\bar{z}^0_i = 0$.

Поэтому $F_{opp} = G_{opp}$.

Замечание 5.2. Если в процессе решения М-задачи симплекс-методом переменная \bar{z}_i перешла из базисных неизвестных в свободные, нет смысла возвращать ее из свободных неизвестных в базисные. Поэтому эту переменную можно исключить, так как она свою роль отыграла.

Пример 5.1. Решить КЗЛП М-методом

$$
\begin{align*}
&x_1 - x_2 + 4x_3 - 2x_4 = 1 \\
&2x_1 + x_2 + 5x_3 - x_4 + 3x_5 = 5 \\
&F(x) = 5 - 2x_1 + x_2 - 6x_3 + 5x_4 \to \min.
\end{align*}
$$

Составим М-задачу и запишем систему ограничений в стандартном виде.
\[
\begin{align*}
\xi_1 &= 1 - (x_1 - x_2 + 4x_3 - 2x_4) \\
\xi_2 &= 5 - (2x_1 + x_2 + 5x_3 - x_4 + 3x_5) \\
\end{align*}
\]
\[
x_j \geq 0, j = 1, \ldots, 5,
\]
\[
G = F(x) + MS, \rightarrow \min.
\]
где \(S = \xi_1 + \xi_2 \), т.е.
\[
G = 5 - (2x_1 - x_2 + 6x_3 - 5x_4) + M (6 - (3x_1 + 9x_3 - 3x_4 + 3x_5)).
\]
Составим симплекс-таблицу

<table>
<thead>
<tr>
<th></th>
<th>(S)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>9</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>(F)</td>
<td>5</td>
<td>2</td>
<td>-1</td>
<td>6</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>(\xi_1)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>(\xi_2)</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>-1</td>
<td>3</td>
</tr>
</tbody>
</table>

Так как \(M \) - сколько угодно большое положительное число, генеральный столбец выбираем по строке \(S \), т.е. любое положительное число, не считая свободного члена, в строке \(S \). Выберем столбец \(x_1 \) в качестве генеральной строки возьмем строку \(\xi_1 \), так как \(\frac{1}{1} < \frac{5}{2} \). Переменная \(x_1 \) становится базисной, а переменная \(\xi_1 \) - свободной. Ее мы опускаем в соответствии с замечанием 5.2. Все элементы генеральной строки делятся на генеральный элемент, а остальные элементы таблицы пересчитываются по правилу прямоугольника.

<table>
<thead>
<tr>
<th></th>
<th>(C_b)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>3</td>
<td>3</td>
<td>-3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(F)</td>
<td>3</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(\xi_1)</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>(\xi_2)</td>
<td>3</td>
<td>3</td>
<td>-3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Выберем теперь в качестве генерального столбца столбец \(x_2 \), а в качестве генеральной строки - строку \(\xi_2 \). Строка \(S \) обнуляется, и мы ее опускаем.
<table>
<thead>
<tr>
<th></th>
<th>C_6</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>2</td>
<td>-</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>x_1</td>
<td>2</td>
<td>3</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Далее генеральный столбец выбрать нельзя, поэтому решение оптимально.
Ответ: $X_{опт} = (2, 1, 0, 0, 0)$, $F_{min} = 2$.

Пример 5.2. Решить КЗЛП М-методом

\[
\begin{align*}
 x_1 + 6x_2 - x_3 + x_4 &= -5 \\
 3x_1 - 2x_2 + x_3 - x_4 &= 1 \\
 F(x) &= x_1 - x_2 - x_3 + x_4 \rightarrow \text{min.}
\end{align*}
\]

Составим М-задачу и запишем систему ограничений в стандартном виде.

\[
\begin{align*}
 \xi_1 &= 5 - (-x_1 - 6x_2 + x_3 - x_4) \\
 \xi_2 &= 1 - (3x_1 - 2x_2 + x_3 - x_4) \\
 G &= F(x) + MS, \rightarrow \text{min.} \quad \text{где} \quad S = \xi_1 + \xi_2, \quad \text{т.е.} \quad G = (-x_1 + x_2 + x_3 - x_4) + M (6 - (2x_1 - 8x_2 + 2x_3 - 2x_4)).
\end{align*}
\]

Составим симплекс-таблицу

<table>
<thead>
<tr>
<th></th>
<th>Св.чл.</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ξ_1</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>ξ_2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

В качестве генерального столбца возьмем столбец x_3, а в качестве генеральной строки - строку ξ_2 и пересчитаем симплекс-таблицу
Генеральный столбец выбрать нельзя, поэтому решение М-задачи оптимально.

\(x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, \xi_1 = 4, \xi_2 = 0 \). С другой стороны, так как \(\xi_1 \neq 0 \), исходная задача не имеет решений.

Теорема 5.2. Если М-задача не имеет решения, то и исходная задача не имеет решения.

Эту теорему примем без доказательства.

Индивидуальные задания. Решить М-методом.

Вариант 1.
\[
\begin{align*}
11x_1 - x_2 - 5x_3 + 3x_4 + 4x_5 &= 18 \\
x_1 + x_2 + x_3 + x_4 &= 2, x_j \geq 0, \quad j = 1, \ldots, 5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 2.
\[
\begin{align*}
10x_1 + x_2 - 2x_3 + 4x_4 + 3x_5 &= 17 \\
2x_1 - x_2 - 2x_3 + x_5 &= 3, x_j \geq 0, \quad j = 1, \ldots, 5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 3.
\[
\begin{align*}
8x_1 - x_2 - 4x_3 + 2x_4 + 3x_5 &= 13 \\
x_1 + x_2 + x_3 + x_4 &= 2, x_j \geq 0, \quad j = 1, \ldots, 5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 4.
\[
\begin{align*}
7x_1 + x_2 - x_3 + 3x_4 + 2x_5 &= 12 \\
2x_1 - x_2 - 2x_3 + x_5 &= 3, x_j \geq 0, \quad j = 1, \ldots, 5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 5.
\[
\begin{align*}
9x_1 - 3x_2 - 7x_3 + x_4 + 4x_5 &= 14 \\
x_1 + x_2 + x_3 + x_4 &= 2, x_j \geq 0, \quad j = 1, \ldots, 5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 6.
\[
\begin{align*}
10x_1 - 2x_2 - 6x_3 + 4x_4 + x_5 &= 16 \\
2x_1 - x_2 - 2x_3 + x_4 &= 3, x_j \geq 0, \quad j = 1, \ldots, 5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 7.
Вариант 8.
\[
\begin{align*}
10x_1 - 2x_2 - 6x_3 + 2x_4 + 4x_5 &= 16, \\
x_1 + x_2 + x_3 + x_4 &= 2, \\
x_j &\geq 0, \quad j = 1,\ldots,5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 9.
\[
\begin{align*}
8x_1 + x_2 - 2x_3 + 4x_4 + 2x_5 &= 14, \\
2x_1 - x_2 - 2x_3 + x_5 &= 3, \\
x_j &\geq 0, \quad j = 1,\ldots,5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 10.
\[
\begin{align*}
7x_1 - 2x_2 - 5x_3 + x_4 + 3x_5 &= 11, \\
x_1 + x_2 + x_3 + x_4 &= 2, \\
x_j &\geq 0, \quad j = 1,\ldots,5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 11.
\[
\begin{align*}
5x_1 + 2x_2 + x_3 + 3x_4 + x_5 &= 9, \\
2x_1 - x_2 - 2x_3 + x_5 &= 3, \\
x_j &\geq 0, \quad j = 1,\ldots,5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 12.
\[
\begin{align*}
11x_1 + 4x_2 - 9x_3 + x_4 + 5x_5 &= 17, \\
x_1 + x_2 + x_3 + x_4 &= 2, \\
x_j &\geq 0, \quad j = 1,\ldots,5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 13.
\[
\begin{align*}
12x_1 - 3x_2 - 8x_3 + 2x_4 + 5x_5 &= 19, \\
x_1 + x_2 + x_3 + x_4 &= 2, \\
x_j &\geq 0, \quad j = 1,\ldots,5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 14.
\[
\begin{align*}
9x_1 + 3x_2 - x_3 + 5x_4 + 2x_5 &= 16, \\
2x_1 - x_2 - 2x_3 + x_5 &= 3, \\
x_j &\geq 0, \quad j = 1,\ldots,5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 15.
\[
\begin{align*}
11x_1 - x_2 - 5x_3 + 3x_4 + 4x_5 &= 18, \\
x_1 + x_2 + x_3 + x_4 &= 2, \\
x_j &\geq 0, \quad j = 1,\ldots,5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 16.
\[
\begin{align*}
10x_1 + x_2 - 2x_3 + 4x_4 + 3x_5 &= 17, \\
2x_1 - x_2 - 2x_3 + x_5 &= 3, \\
x_j &\geq 0, \quad j = 1,\ldots,5, \\
F(x) &= 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]
Вариант 17.
\[
\begin{align*}
13x_1 - 2x_2 - 7x_3 + 3x_4 + 5x_5 &= 21 \\
x_1 + x_2 + x_3 + x_4 &= 2, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]

Вариант 18.
\[
\begin{align*}
11x_1 + 2x_2 - x_3 + 5x_4 + 3x_5 &= 19 \\
2x_1 - x_2 - 3x_4 &= 3, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]

Вариант 19.
\[
\begin{align*}
14x_1 - x_2 - 6x_3 + 4x_4 + 5x_5 &= 25 \\
x_1 + x_2 + x_3 + x_4 &= 2, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]

Вариант 20.
\[
\begin{align*}
13x_1 + x_2 - 3x_3 + 5x_4 + 4x_5 &= 22 \\
2x_1 - x_2 - 2x_3 + x_4 &= 3, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]

Вариант 21.
\[
\begin{align*}
5x_1 - x_2 - 3x_3 + x_4 + 2x_5 &= 8 \\
x_1 + x_2 + x_3 + x_4 &= 2, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]

Вариант 22.
\[
\begin{align*}
5x_1 + x_2 + 2x_4 + x_5 &= 7 \\
2x_1 - x_2 - 2x_4 + x_5 &= 3, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]

Вариант 23.
\[
\begin{align*}
13x_1 - 5x_2 - 11x_3 + x_4 + 6x_5 &= 20 \\
x_1 + x_2 + x_3 + x_4 &= 2, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]

Вариант 24.
\[
\begin{align*}
8x_1 + 5x_2 + 4x_3 + 6x_4 + x_5 &= 15 \\
2x_1 - x_2 - 2x_3 + x_5 &= 3, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]

Вариант 25.
\[
\begin{align*}
3x_2 + 4x_3 + 2x_4 - x_5 &= 18 \\
x_1 + x_2 + x_3 + x_4 &= 2, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]

Вариант 26.
\[
\begin{align*}
3x_1 - 3x_2 - 5x_3 - x_4 + 2x_5 &= 4 \\
2x_1 - x_2 - 2x_3 + x_5 &= 3, \quad x_j \geq 0, \quad j = 1, \ldots, 5,
\end{align*}
\]
\[F(x) = 1 + x_1 + 2x_2 \rightarrow \min\]
Вариант 27.
\[
\begin{align*}
&x_1 + 4x_2 + 5x_3 + 3x_4 - x_5 = 3, \\
&x_1 + x_2 + x_3 + x_4 = 2, x_j \geq 0, \quad j = 1, \ldots, 5, \\
&F(x) = 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 28.
\[
\begin{align*}
&5x_1 - 4x_2 - 7x_3 - x_4 + 3x_5 = 7, \\
&2x_1 - x_2 - 2x_3 + x_4 = 3, x_j \geq 0, \quad j = 1, \ldots, 5, \\
&F(x) = 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 29.
\[
\begin{align*}
&2x_1 + 5x_2 + 6x_3 + 4x_4 - x_5 = 5, \\
&x_1 + x_2 + x_3 + x_4 = 2, x_j \geq 0, \quad j = 1, \ldots, 5, \\
&F(x) = 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 30.
\[
\begin{align*}
&7x_1 - 5x_2 + 7x_3 - x_4 + 4x_5 = 10, \\
&2x_1 - x_2 - 2x_3 + x_4 = 3, x_j \geq 0, \quad j = 1, \ldots, 5, \\
&F(x) = 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 31.
\[
\begin{align*}
&4x_1 - 5x_2 - 8x_3 - 2x_4 + 3x_5 = 5, \\
&x_1 + x_2 + x_3 + x_4 = 2, x_j \geq 0, \quad j = 1, \ldots, 5, \\
&F(x) = 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

Вариант 32.
\[
\begin{align*}
&-x_1 + 5x_2 + 7x_3 + 3x_4 - 2x_5 = 0, \\
&2x_1 - x_2 - 2x_3 + x_4 = 3, x_j \geq 0, \quad j = 1, \ldots, 5, \\
&F(x) = 1 + x_1 + 2x_2 \rightarrow \min
\end{align*}
\]

1.6 Двойственные задачи.

Постановка двойственной задачи.

Рассмотрим следующую задачу:
Молокозавод, поставляющий на рынок сметану и творог, хочет пустить линию по производству йогуртов, но не имеет свободных денег. Бизнесмен предлагает инвестиции в обмен на то, что завод отдаст ему частично производство творога и сметаны, для чего продаст ему имеющиеся у завода молоко, электроэнергию и оборудование. При этом инвестиции не должны быть меньше прибыли, получаемой заводом от продажи творога и сметаны. Со своей стороны, бизнесмен, договариваясь о покупке молока, энергии оборудования, хочет минимизировать свои расходы, но при этом цена расходов завода на производство единицы продукции не может быть меньше дохода, получаемого за её реализацию.

1.6.1 Математическая модель:
Оформим данные этой задачи в виде таблицы (цифры, конечно, условные):
<table>
<thead>
<tr>
<th></th>
<th>Творог</th>
<th>Сметана</th>
<th>Запасы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Расход молока (ц) на ед продукции</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Расход электроэнергии (кВ/ч)</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Амортизация оборудования (%)</td>
<td>1</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Доход от реализации единицы продукции (тыс.руб)</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Пусть x_1 и x_2 – производимое заводом кол-во творога и сметаны (в ц.) соответственно. Тогда доход, полученный заводом, равен $F = 4x_1 + 5x_2$

Инвестиции, которые хотел бы получить завод, должны быть не менее $\max F$. При этом, так как его ресурсы ограничены, то

$$\begin{align*}
2x_1 + x_2 & \leq 12 \\
3x_1 + x_2 & \leq 15 \\
x_1 + 2x_2 & \leq 20, \quad x_1, x_2 \geq 0
\end{align*}$$

Это так называемая прямая задача, т.е. математическая модель задачи для продавца. Сформируем теперь двойственную задачу, т.е. построим математическую модель задачи для покупателя (инвестора).

Пусть y_1, y_2, y_3 – цена центнера молока, киловатт часа, амортизации 1% оборудования, которое хочет предложить бизнесмен. Его расходы при этом равны $G = 12y_1 + 15y_2 + 20y_3 \leftarrow \min$, т.е. Предлагаемые им цены должны минимизировать его расходы. При этом, отказавшись от производства творога, завод получит $2y_1 + 3y_2 + y_3$ тыс. руб. за центнер, и это не должно быть меньше дохода, полученного заводом за его реализацию. Аналогично для производства сметаны, т.е.

$$\begin{align*}
2y_1 + 3y_2 + y_3 & \geq 4 \\
y_1 + y_2 + 2y_3 & \geq 5, \quad y_1, y_2, y_3 \geq 0
\end{align*}$$

Двойственные задачи с ограничениями неравенствами

Задача 1. Дана система неравенств:

$$\begin{align*}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n & \leq b_1 \\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n & \leq b_2 \\
\vdots & \\
a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n & \leq b_m \\
x_i & \geq 0, \quad i=1,2,\ldots,n
\end{align*}$$

Среди всех неотрицательных решений системы неравенств выбрать такое, которое максимизирует функцию $F = c_0 + c_1 x_1 + \ldots + c_n x_n$
Задача 2:
Дана система неравенств

\[
\begin{align*}
 a_{11}y_1 + a_{21}y_2 + \ldots + a_{m1}y_m & \geq c_1 \\
 a_{12}y_1 + a_{22}y_2 + \ldots + a_{m2}y_m & \geq c_2 \\
 \quad \vdots & \\
 a_{1n}y_1 + a_{2n}y_2 + \ldots + a_{mn}y_m & \geq c_n
\end{align*}
\]

\[y_i \geq 0, i=1,2,\ldots,m \]

Среди всех неотрицательных решений системы неравенств найти то, которое минимизирует функцию \(\Phi \), \(\Phi = c_0 + b_1y_1 + b_2y_2 + \ldots + b_{nm}y_m \)

Эти задачи называются двойственными друг другу задачами с ограничениями неравенствами.

Замечания:
Если одна из задач является задачей на минимум функции, то двойственной ей будет задачей на максимум.
Правые части ограничений одной задачи являются коэффициентами при неизвестных целевой функции двойственной задачи и наоборот
Свободные члены целевой функции у обеих задач одинаковые
Каждой переменной одной из задач соответствует ограничение другой задачи и каждому ограничению соответствует переменная
Неравенства ограничений направлены в разные стороны: для задачи максимума – это \(\leq 0 \), а для задачи минимума \(\geq 0 \)
Матрицы коэффициентов при переменных в прямой и двойственных задачах получаются одна из другой транспонированием
В двойственных задачах с ограничениями–неравенствами все переменные неотрицательны

Теорема о минимаксе:
Если одна из двойственных задач имеет решение, то и другая задача имеет решение, при этом максимум функции \(F \) равен минимуму функции \(\Phi \).

Симплекс-таблицы двойственных задач
Каждому ограничению–неравенству сопоставим базисную переменную. Исходные переменные будем считать свободными.

Задача 1
\[
\begin{align*}
 x_{n+1} &= b_1 - (a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n) \\
 x_n + m &= b_m - (a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n) \\
 x_i & \geq 0, i=1,2,\ldots,n+m \\
 F_1 &= F = -c_0 - (c_1x_1 + c_2x_2 + \ldots + c_nx_n) \leftarrow \min
\end{align*}
\]
Задача 2:
\[
\begin{align*}
 y_{m+1} &= a_{11}y_1 + a_{21}y_2 + \ldots + a_{m1}y_m - c_1 \\
 y_m + n &= a_{1n}y_1 + a_{2n}y_2 + \ldots + a_{mn}y_m - c_n \\
 y_i & \geq 0, i=1,2,\ldots,m+n \\
 \Phi &= c_0 + b_1y_1 + b_2y_2 + \ldots + b_{nm}y_m \leftarrow \min
\end{align*}
\]
Таким образом, число переменных в обеих задачах равно \(n+m \) (т.е. число неизвестных плюс число ограничений)
Свободным переменным одной задачи соответствует базисные другой задачи.

Задача 1: \(x_1, x_2, \ldots, x_n \) - свободные; \(x_{n+1}, \ldots, x_{n+m} \) – базисные
Задача 2: \(y_{m+1}, y_{m+2}, \ldots y_{m+n} \) - базисные; \(y_1, y_2, \ldots y_m \) – свободные
Составим симплекс таблицы этих задач.
Задача 1

<table>
<thead>
<tr>
<th>Составляем</th>
<th>x₁</th>
<th>x₂</th>
<th>xₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swobodnyy</td>
<td>F₁</td>
<td>c₀</td>
<td>c₁</td>
</tr>
<tr>
<td>chlen</td>
<td>xₙ+1</td>
<td>b₁</td>
<td>a₁₁</td>
</tr>
<tr>
<td>xₙ+2</td>
<td>b₂</td>
<td>a₂₁</td>
<td>a₂₂</td>
</tr>
<tr>
<td></td>
<td>xₙ+m</td>
<td>bₘ</td>
<td>aₘ₁</td>
</tr>
</tbody>
</table>

Задача 2

<table>
<thead>
<tr>
<th>Составляем</th>
<th>y₁</th>
<th>y₂</th>
<th>yₘ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swobodnyy</td>
<td>Φ</td>
<td>c₀</td>
<td>-b₁</td>
</tr>
<tr>
<td>chlen</td>
<td>yₘ+1</td>
<td>-c₁</td>
<td>-a₁₁</td>
</tr>
<tr>
<td>yₘ+2</td>
<td>-c₂</td>
<td>-a₂₁</td>
<td>-a₂₂</td>
</tr>
<tr>
<td></td>
<td>yₙ+m</td>
<td>-cₙ</td>
<td>-aₙ₁</td>
</tr>
</tbody>
</table>

Сравнивая эти 2 таблицы, мы видим, что одна из них получается из другой транспонированием матрицы и умножением каждого элемента на -1.
Проиллюстрируем доказательство теоремы о минимаксе с помощью симплекс – таблиц.
Не ограничивая общности, можно считать, что приведенная таблица задачи 1 является финальной. В конце концов, если задача 1 имеет решение, то в качестве свободных переменных можно взять x₁, x₂, … xₙ, так что все bᵢ≥0, а все cⱼ≤0, где i= 1, 2, …, m; j= 1, 2, …, n, но тогда и симплекс – таблица задачи 2 также решает задачу минимума, поскольку -cⱼ≥0, j= 1, 2, …, n и все -bᵢ≤0 i= 1, 2, …, m
Это означает, что оптимальным решением задачи 1 будет: x₁=x₂=…=xₙ=0, xₙ+i=bᵢ, i=1,2,…,m. maxF = -min F₁= c₀, а для задачи 2: y₁=y₂=…=yₙ=0, yₘ+j= -cⱼ≥0, j=1, 2,… n minΦ= c₀ =maxF, и это доказывает теорему о минимаксе.
Замечания
1. Если при решении симплекс методом задачи 1 мы меняем местами переменные \(x_a\) и \(x_b\), т.е. свободную и базисную, то совершаем симплекс преобразование двойственной задачи, мы также меняем местами свободную и базисную переменные двойственной задачи, которые им соответствуют.
2. Если в оптимальном решении одной задачи переменная отлична от нуля, т.е. является базисной, то соответствующая ей переменная двойственной задачи является свободной, а значит, равна 0.

Покажем на примере решения задачи симплекс-преобразование двойственных задач.

Задача 1

\[F = 4x_1 + 5x_2 \rightarrow \text{max} \]
\[2x_1 + x_2 \leq 12 \]
\[3x_1 + x_2 \leq 15 \]
\[x_1 + 2x_2 \leq 20 \]
\[x_1, x_2 \geq 0 \]
\[x_3 = 12-(2x_1 + x_2) \geq 0 \]
\[x_4 = 15-(3x_1 + x_2) \geq 0 \]
\[x_5 = 20-(x_1 + 2x_2) \geq 0 \]
\[F_1 = -F = -4x_1 - 5x_2 \rightarrow \text{min} \]

<table>
<thead>
<tr>
<th>Св.ч</th>
<th>X1</th>
<th>X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>X3</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>X4</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>X5</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

\[x_5 \leftrightarrow x_2 \]

<table>
<thead>
<tr>
<th>Св.ч</th>
<th>X1</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>-50</td>
<td>3/2</td>
</tr>
<tr>
<td>X3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>X4</td>
<td>5</td>
<td>5/2</td>
</tr>
<tr>
<td>X2</td>
<td>10</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Задача 2

\[\Phi = 12y_1 + 15y_2 + 20y_3 \rightarrow \text{min} \]
\[2y_1 + 3y_2 + y_3 \geq 4 \]
\[y_1 + y_2 + 2y_3 \geq 5 \]
\[y_1, y_2, y_3 \geq 0 \]
\[Y_4 = -4 + 2y_1 + 3y_2 + y_3 \geq 0 \]
\[Y_5 = -5 + y_1 + y_2 + 2y_3 \geq 0 \]

<table>
<thead>
<tr>
<th>С.ч.</th>
<th>Y1</th>
<th>Y2</th>
<th>Y3</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Phi</td>
<td>0</td>
<td>-12</td>
<td>-15</td>
</tr>
<tr>
<td>Y4</td>
<td>-4</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>Y5</td>
<td>-5</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

\[y_3 \leftrightarrow y_5 \]

<table>
<thead>
<tr>
<th>С.ч.</th>
<th>Y1</th>
<th>Y2</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Phi</td>
<td>50</td>
<td>-2</td>
<td>-5</td>
</tr>
<tr>
<td>Y4</td>
<td>-3/2</td>
<td>-3/2</td>
<td>-5/2</td>
</tr>
<tr>
<td>Y3</td>
<td>5/2</td>
<td>½</td>
<td>½</td>
</tr>
</tbody>
</table>

\[Y_1 \leftrightarrow y_4 \]
Поясним решение этих задач.
Молокозавод может рассчитывать на 52 тыс. руб. Этот доход он мог бы получить производя 4/3 центнера творога и 28/3 ц сметаны. При этом бизнесмен готов заплатить по 1 тыс. руб. за 1 ц молока, 2 тыс. руб. за 1 % амортизацию оборудования и ничего не платить за электроэнергию

Двойственная задача к задаче с ограничениями равенствами.

Рассмотрим основную задачу линейного программирования. Дана система \(m \) линейных уравнений с \(n \) неизвестными

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
 \vdots & \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m
\end{align*}
\]

Предполагается, что ранг системы равен числу \(m \) уравнений. Требуется среди всех неотрицательных решений этой системы найти такое решение, при котором функция \(F = c_0 + c_1x_1 + c_2x_2 + \ldots + c_nx_n \) принимает минимальное значение.

Задачей, двойственной к основной, называется следующая задача

Задача 3
Дана система \(n \) линейных неравенств относительно \(m \) неизвестных \(y_1, y_2, \ldots, y_m \)

\[
\begin{align*}
 a_{11}y_1 + a_{12}y_2 + \ldots + a_{m1}y_m &\leq c_1 \\
 a_{12}y_1 + a_{22}y_2 + \ldots + a_{m2}y_m &\leq c_2 \\
 \vdots & \\
 a_{1n}y_1 + a_{2n}y_2 + \ldots + a_{mn}y_m &\leq c_n
\end{align*}
\]

Требуется среди всех решений системы неравенств найти такое, при котором функция \(\Phi = b_1y_1 + \ldots + b_my_m \) принимает максимальное значение.

Замечания:
1. В задаче 3 не требуется, чтобы \(y_i \) были неотрицательны.
2. Иногда система ограничений смешанная, т.е. наряду с равенствами задаются и ограничения неравенства.
В задаче на минимум это неравенства вида больше или равно. Каждому ограничению соответствует переменное у. Тогда ограничению равенству соответствует переменное, которое может быть и отрицательным, а неравенству только неотрицательное.

3. Задачу 3, двойственную основной, можно получить и таким образом: преобразовать основную задачу линейного программирования к задаче с ограничениями неравенствами, а затем для неё составить двойственную. При этом полученная задача будет эквивалентна задаче 3.

4. Для основной задачи линейного программирования и двойственной к ней также справедлива теорема о минимаксе, поскольку как уже говорилось выше, эту задачу можно свести к задаче с ограничениями-неравенствами.

5. Если задача 1 не имеет решения, например, если функция F не ограничена, то система ограничений двойственной задачи несовместна. Действительно, неограниченность функции F означает, что например, с1>0, но в столбце нет положительных элементов. Тогда в двойственной таблице у имеет свободный член - с1<0, а все элементы строки положительны, т.е. для любых неотрицательных значений переменных, через которые выражается у значение у будет отрицательным.

6. Из замечания 2 к стр. 27 следует, что если нам стало известно оптимальное решение одной из двойственных задача (например получено геометрически), то можно найти оптимальное решение двойственной задачи.

Покажем, как это делается на примере.
Задача 1.

Найти minF=5-4x1+4x2, если

\[
\begin{align*}
-2x_1+x_2-3x_3+x_4&=-1 \\
-x_1+x_2+x_3-2x_4&=3 \\
 x_1,x_2,x_3,x_4&\geq0
\end{align*}
\]

Составим двойственную задачу.

Задача 2.

Найти max\(F=5-y_1+3y_2\), если

\[
\begin{align*}
y_3&-2y_1-y_2\leq4 \\
y_4&y_1+y_2\leq4 \\
y_5&-3y_1+y_2\leq0 \\
y_6&y_1-2y_2\leq0
\end{align*}
\]

Поскольку двойственная задача зависит от двух переменных, её можно решить геометрически. Область задается прямыми:

2 \(y_1+y_2=4, y_1+y_2=4\), \(y_2=3y_1, y_1=2y_2\), grad\(F=(-1;3)\)

Точка Max есть пересечение прямых

\[
\begin{align*}
y_1+y_2&=4 \\
y_2&=3y_1 \\
y_1&=1 \\
y_2&=3
\end{align*}
\]

\(F_{max}=F(1,3)=5-1+9=13\)

\(x_1x_2x_3x_4\) – свободные; \(x_3x_6\) – базисные

\(y_5y_3y_4y_6\) – базисные; \(y_1,y_2\) – свободные

Пояснения: в задаче 1 два ограничения, им соответствуют переменные \(y_1\) и \(y_2\). Каждому из переменных \(x_1,x_2,x_3,x_4\) соответствуют ограничения, а им, в свою очередь, переменные \(y_3,y_4,y_5,y_6\). Для оптимального
решения задачи 2 $y_1 = 1, y_2 = 3$. Подставляя эти значения в ограничения задачи 2, получаем, что первое и четвертое неравенства – строгие. -2-3<4 и 1-6<0. Значит, y_1, y_2, y_3, y_6 в оптимальном решении задачи 2 отличны от нуля, а потому соответствующие им переменные в оптимальном решении задачи 1 равны нулю, т.е. $x_1 = x_4 = x_5 = x_6 = 0$.

Но тогда \(\begin{cases} 2x_2 - 3x_3 = -1 \\ x_2 + x_3 = 3 \end{cases} \) откуда \(x_3 = 1, x_2 = 2 \) и

\[F_{\min} = F(0, 2, 1, 0, 0, 0) = 5 + 4 \cdot 2 = 13 = \Phi_{\max}. \]

\[x_1x_2, x_3x_4 \text{(свободные)} \quad x_5x_6 \text{(базисные)} \]

\[y_3y_4, y_5y_6 \text{(базисные)} \quad y_1y_2 \text{(свободные)} \]

2. Транспортная задача.

Составить план передачи порожних вагонов со станции A_1, A_2, A_3 на станции B_1, B_2, B_3 так, чтобы суммарная стоимость перегонов была наименьшей. Кол-во вагонов, скопившихся а станциях A_1, A_2, A_3 и кол-во вагонов, принимаемых станциями B_1, B_2, B_3, а также стоимость транспортных услуг указаны в таблице:

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>2</td>
<td>4.5</td>
<td>3</td>
</tr>
<tr>
<td>A_2</td>
<td>7</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>A_3</td>
<td>4.2</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

| потребности | 80 | 30 | 10 | 120/120 |

Составим математическую модель задачи.

Пусть X_{ij} – кол-во порожних вагонов перегоняемых со станции A_i на станцию B_j. Поскольку все порожние вагоны должны быть вывезены, а нужное их количество должно быть доставлено, то выполнены следующие равенства.

\[\begin{cases} x_{11} + x_{12} + x_{13} = 60 \\ x_{21} + x_{22} + x_{23} = 40 \end{cases} \]

Здесь записано условие, что все вагоны должны быть вывезены.

\[\begin{cases} x_{31} + x_{32} + x_{33} = 20 \end{cases} \]

Например, первое из этих равенство означает, что на станцию B_1 должно быть доставлено требуемые 80 вагонов.

Транспортные расходы составляют $F = 2x_{11} + 4.5x_{12} + 3x_{13} + 7x_{21} + 4x_{22} + 10x_{23} + 4.2x_{31} + 3x_{32} + 6x_{33}$.

Ищется минимум функции F.

Общая постановка задачи

На станциях отправления A_1, A_2, \ldots, A_m сосредоточены соответственно a_1, a_2, \ldots, a_m единиц однородного груза. Этот груз нужно перевезти в пункты назначения B_1, B_2, \ldots, B_n причем в пункт B_i надо завезти b_i единиц груза. Стоимость перевозки единицы груза из A_i в B_j задана и равно $c_{ij} \geq 0$. Требуется составить такой план перевозок, при котором общая стоимость окажется минимальной. При этом предполагается, что общий запас грузов на станциях отправления равен суммарной потребности всех станций назначения, т.е.

\[\sum_{i=1}^{m} d_i = \sum_{j=1}^{n} b_j \]

Такая модель называется сбалансированной или закрытой.
Математическая модель
Обозначим хij кол-во единиц груза, отправляемого из пункта Ai в пункт Bj. Тогда

\[
\begin{align*}
\sum_i x_{ij} &= a_i \\
\sum_j x_{ij} &= b_j \\
\end{align*}
\]

F=c11x11+c12x12+...+cmnxnn = \min x_{ij} \geq 0, i=1,2,...m; j=1,2,...n

Иными словами, среди всех неотрицательных решений системы m+n равенств найти такое, которое дает минимум функция F.

Лемма 1 Если транспортная задача сбалансирована, т.е. \(\sum_i a_i = \sum_j b_j = D \), то система ограничений совместна. В самом деле, положим \(x_{ij} = a_i b_j / D \). Тогда \(\sum_j x_{ij} = \sum_i a_i b_j / a_i = a_i \) * \(\sum_j b_j = b_j \) = a_i,

i=1,2,...m. И аналогично \(\sum_i x_{ij} = \sum_j a_i b_j / D = b_j / D * \sum_i a_i = a_i \).

\[\sum_{i=1}^{m} a_i = b_j, \ j=1,2,...n \]

Лемма 2 Сбалансированная транспортная задача всегда имеет решение. Действительно, система ограничений совместна, а функция F линейна, причем F\geq0.

Лемма 3 Ранг системы уравнений ограничений равен m+n-1

В самом деле, сумма всех уравнений ограничений * имеет вид \(\sum_j x_{ij} = \sum_j b_j = D, \) а уравнений ограничений ** соответственно \(\sum_i x_{ij} = \sum_i a_i = D, \) т.е. между уравнениями по крайней мере, одна линейная зависимость, а значит, ранг системы r\leq m+n-1. Покажем, что r=m+n-1, т.е. что число базисных неизвестных равно m+n-1. В качестве базисных возьмем неизвестные, стоящие в первой строке и первом столбце, т.е. \(x_{11}, x_{12},..., x_{1n}, x_{21}, x_{22},..., x_{m1} \).

Из второго уравнения системы ** выразим \(x_{12} = b_2 - x_{22} - x_{32} - ... - x_{m2} \) и аналогично \(x_{1j} = b_j - x_{2j} - x_{3j} - ... - x_{mj}, \ j=2,3,...n \). Из второго уравнения системы * выразим \(x_{21} = a_2 - x_{22} - x_{23} - ... - x_{2n} \), и аналогично, \(x_{11} = a_1 - x_{12} - x_{13} - ... - x_{1n} = a_1 - (b_2 - x_{22} - x_{23} - ... - x_{2n}) - (b_3 - x_{23} - x_{3n} - ... - x_{mn}) \) т.е. теперь все переменные первого столбца и первой строки выражены через mn-(m+n-1) остальные, т.е. r=m+n-1.

Замечания.
В качестве базисных необязательно брать эти неизвестные, но в любом другом случае их число все равно будет m+n-1.
Итак, транспортная задача является частным случаем основной задачи линейного программирования и, значит, может быть решена симплекс-методом. Однако, поскольку число неизвестных x_{ij} даже для небольшой задачи велико, а система ограничений имеет специфический вид, и именно, каждое переменное входит один раз в ограничения *, и один раз в ограничения ** с коэффициентом 1, то применяется другой, более быстрый метод решения.

Этот метод состоит из следующих этапов:
1. Находится допустимое базисное решение.
2. Проверяются условия его оптимальности.
3. Если условие выполнено, то решение оптимально, если нет, то находим другое базисное решение, которое уменьшает, или, во всяком случае, не увеличивает значение целевой функции.

Поскольку на каждом шаге значения целевой функции, вообще говоря, уменьшается, то на каком-то конечном шаге мы достигнем ее минимума. Однако может случиться ситуация, когда происходит рокировка свободной переменной и базисной, равной 0. тогда значение целевой функции не изменяется. При этом останавливается и останавливается в исходную вершину, происходит так называемое «Зацикливание». Существуют методы, позволяющие выходить из такого тупика.

Описание базисного допустимого решения.
Это можно сделать разными методами. Приведем два. Это так называемый метод Северо- западного угла и метод минимальных стоимостей.

A. Метод Северо-западного угла.
Рассмотрим клетку (1,1). Если $a_1 > b_1$, то полагаем $x_{11} = b_1$, и исключаем столбец B1. Суммарное число пунктов уменьшилось на 1. Теперь полагаем $a_1 = a_1 - b_1$. Если наоборот, $a_1 < b_1$, то $x_{11} = a_1$ и исключаем строку A1, а $b_1 = b_1 - a_1$. Если же $a_1 = b_1$, то $x_{11} = a_1 = b_1$ и исключаем либо A1 либо B1. Например, если исключили A1, то $b_1 = 0$.

Таким образом, на каждом шаге число пунктов уменьшается на 1, а в конце сразу на 2, и число базисных переменных равно m+n-1, некоторые из которых могут равняться 0. В этом случае план называется вырожденным.

Пример

<table>
<thead>
<tr>
<th></th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>20</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>0</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>A3</td>
<td>7</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>20</td>
<td>60</td>
</tr>
</tbody>
</table>

Т.к. $a_1 = b_1$, то $x_{11} = 20$. Исключаем A1 и полагаем $b_1 = 20 - 20 = 0$. Далее рассматриваем вторую строку $x_{33} = \min(30, 40) = 30$. Исключаем первый столбец, $a_1 = 30 - 0 = 30$. Теперь $x_{32} = \min(30, 60) = 30$. Исключаем A2 и $b_2 = 60 - 30 = 30$. Далее $x_{32} = \min(30, 40) = 30$. Исключаем B2 и $a_3 = 40 - 30 = 10$. Наконец, $x_{33} = a_3 = 10$ и исключаем сразу A3 и B3. Полученные план приведен на схеме. Для него значение целевой функции $F = 20 \cdot 10 + 4 \cdot 30 + 30 \cdot 3 + 10 \cdot 2 = 460$.

Метод минимальных стоимостей.
Использует тот же принцип, но если в первом случае мы идем последовательно по строке, то во втором выбираем клетки с наименьшим значением c_{ij}. Рассмотрим тот же пример т.к. $C_{12} = C_{13} = 2$, то полагаем $x_{12} = \min(20, 60) = 20$. Исключаем A1, a $b_1 = 60 - 20 = 40$. Следующие по значению $C_{12} = C_{32} = 2, \text{ но } A_1 \text{ исключено, поэтому полагаем } x_{32} = \min(10, 40) = 10$. Исключаем B3 и $a_3 = 30$. Теперь $x_{32} = \min(30, 40) = 30$. Исключаем A3 и $b_1 = 40 - 30 = 10$. Далее $x_{21} = \min(20, 30) = 20$. Исключаем B1 и $a_1 = 10$. Наконец $x_{22} = 10$ и исключаем сразу A2 и B2. Для данного плана $F = 20 \cdot 1 + 20 \cdot 4 + 10 \cdot 5 + 30 \cdot 3 + 10 \cdot 2 = 260$.

32
Мы видим, что в данном примере метод минимальных стоимостей дал значительное уменьшение целевой функции.

<table>
<thead>
<tr>
<th></th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>20</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>A3</td>
<td>7</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

Граф транспортной задачи.

Для дальнейшего полезной является геометрическая интерпретация транспортной задачи.

Каждому пункту отправления A_i и каждому пункту назначения B_j сопоставим точку, при этом точки A_i и точки B_j будут располагать на двух параллельных уровнях и называть их вершинами.

Каждому базисному переменному x_ij сопоставим отрезок (A_i,B_j). Назовем его ребром и будем говорить что, вершины A_i и B_j инцидентны ребру (A_i,B_j), а ребро инцидентно данным вершинам.

Подобный чертеж назовем графом допустимого решения транспортной задачи.

Цепью назовем последовательность ребер такую, что любые два соседних ребра имеют общую вершину и каждая вершина цепи инцидента только двум ребрам. Граф назовем связным, если для любых двух вершин существует цепь, их соединяющая.

Циклом называется цепь, у которой начало совпадает с концом.

Замечание. Каждой базисной переменной x_ij, т.е. ребру (A_i,B_j) соответствует клетка (I,j) матрицы. Тогда цепь - это последовательность клеток такая, что две соседние клетки лежат или в одной строке или в одном столбце, при этом в одной строке или столбце не могут лежать 3 клетки, а в цикле первая и последняя клетка совпадают.

Лемма 4.

Цикл графа транспортной задачи может содержать только четное число ребер.

В самом деле, каждое ребро – это переход с одной линии на другую. А значит, находясь в вершине A_i после нечетного числа шагов мы можем оказаться только в вершине B_j, и чтобы вернуться в вершину A_i нужно сделать четное число шагов.

Лемма 5.

Граф базисного решения транспортной задачи не содержит циклов.

Базисное решение – это выражение базисных неизвестных через свободные (которые равны 0), а значит, значения базисных переменных определено значениями свободных.

Пусть граф базисного решения содержит цикл. Припишем каждому ребру цикла последовательно + или – и зададимся любым числом Δ. Затем каждую базисную переменную которой соответствует ребро цикла, помеченную + увеличим на Δ, а помеченную – уменьшим на Δ.

Покажем, что при этом мы получим новое базисное решение, хотя значение свободных неизвестных не изменилось, а т.к. это невозможно, то отсюда будет следовать отсутствие циклов. В самом деле пусть, например, вершина A_i, принадлежит циклу, т.е. ребра (A_i,B_j) и (A_i,B_k) входят в цикл, причем они помечены одно + а другое -. Тогда в i-ом ограничении *, x_jk=x_j+Δ, а x_ik=x_i-Δ. Значения других переменных не менялось, а потому i-ое равенство снова будет выполнено. Следствие. Из доказательства леммы 5 вытекает что если {x_{ij}≥0}, допустимое базисное решение транспортной задачи, то совершив указанное преобразование переменных, называемое сдвигом по циклу, мы снова получим решение системы ограничений транспортной задачи. При этом если Δ равно минимальному значению базисных переменных, помеченных в цикле знаком - то полученное решение снова будет допустимым, т.е. значение всех переменных неотрицательно.
Нам понадобится теорема из теории графов.

Определение. Связный граф без циклов называется деревом.

Теорема. Дерево на \(N \) вершинах содержит \(N-1 \) ребер, причем это наименьшее число ребер в связном графе на \(N \) вершинах. Граф без циклов, содержащий \(N \) вершин и \(N-1 \) ребро связан, а граф без циклов, содержащий \(N \) вершин и \(N \) ребер содержит ровно 1 цикл.

Лемма 6. Граф базисного решения транспортной задачи является деревом, т.е. он связан и не содержит циклов. Это следует из предыдущих лемм.

В качестве примера построим графы базисных решений, найденных методами Северо-западного угла и наименьших стоимостей.

А. \(x_{11}=20; x_{21}=0; x_{22}=30; x_{32}=30; x_{33}=10; \)

Б. \(x_{12}=20; x_{21}=20; x_{22}=10; x_{32}=30; x_{33}=10; \)

Мы видим что оба графа связаны и не имеют циклов. Перейдем теперь к отысканию оптимального решения. Для этого посмотрим, как выглядит симплекс-метод применительно к транспортной задаче.

При решении \(ZLP \) симплекс-методом мы выражали через свободные неизвестные базисные так, чтобы свободные члены были неотрицательны, и целевую функцию. Если в целевой функции коэффициенты при свободных неизвестных все были неотрицательны, то полученное базисное решение было оптимально. Если же коэффициент при некотором свободном неизвестном был отрицательным, то производилась рокировка этого свободного и некоторого базисного неизвестного, так, чтобы все неизвестные к прежнему были бы неотрицательны. Попробуем вычислить коэффициент \(\varphi_{ij} \) с которым свободное переменное \(x_{ij} \) входит в целевую функцию.

Лемма 7. Пусть \(x_{ij} \) - свободная переменная Присоединим ребро \((A_i,B_j) \) к графу базисного решения. В полученном цикле ребро \((A_i,B_j) \) пометим знаком +. Тогда переменная \(x_{ij} \) – входит в выражение базисной переменной \(x_{ke} \) с коэффициентом +1, если ребро \((A_k,B_e) \), помечено знаком + и с коэффициентом -1, если ребро помечено знаком –, и с коэффициентом 0, если ребро не принадлежит циклу.

Доказательство.

В базисном решении все свободные неизвестные равны nulio. Далее теперь свободной неизвестной \(x_{ij} \) значение \(\Delta \), а все остальные свободные неизвестные по прежнему равны 0.

Решение системы неравенств для этого набора значений свободных неизвестных можно было получить пересчетом по циклу для данного \(\Delta \).

Тогда \(x_{ij} = \Delta \), остальные свободные неизвестные по прежнему = 0. Базисные же неизвестные изменяются по такому правилу: \(x_{ke} \) увеличится или уменьшиться на \(\Delta \) в зависимости от того, входит ребро \((A_k,B_e) \) в цикл со знаком + или со знаком -. Если же \((A_k,B_e) \) не принадлежит циклу, то \(x_{ke} \) не изменится. Отсюда следует лемма 7.

34
Лемма 8.
Коэффициент ϕ_{ij}, с которым свободная переменная x_{ij} входит в целевую функцию F, равен алгебраической сумме стоимостей, соответствующих ребрам цикла, получаемого присоединением ребра (A_i,B_j) к графу базисного решения, т.е. если ребро (A_k,B_e), помечено в цикл знаком +, то в сумму войдет $C_{k,e}$, а если знаком -, то в сумму войдет $-C_{k,e}$. Ребро (A_i,A_j), помечено знаком +.

Действительно, переменная x_{ij} входит непосредственно в F с коэффициентом C_{ij}, а кроме того, в выражение базисной переменной $x_{k,e}$ с коэффициентом \pm или не входит совсем на основании леммы 7. Отсюда такой метод решения транспортной задачи.

Он называется распределительным.

1. Находим базисное решение.
2. Для каждого свободного неизвестного x_{ij} находим алгебраическую сумму стоимостей цикла, полученного присоединением ребра (A_i,B_j) к графу базисного решения, так, что ребро (A_i,B_j) получает знак +.
3. Если $\phi_{ij} \geq 0$ для всех свободных переменных x_{ij}, то найденное базисное решение и является оптимальным.
4. Если же для клетки (I,j) $\phi_{ij} < 0$, то присоединяя ее к графу, находим цикл, помечаем его ребра и находим ребро $x_{k,e}$ цикла, для которого $\Delta x_{k,e}$ принимает минимальное значение среди всех ребер цикла, помеченных знаком -.
5. Делаем пересчет по циклу с этим Δ. Получаем новое базисное решение, для которого $x_{ij} = \Delta$, а $x_{ke} = 0$. Новое значение целевой функции $F = F + \phi_{ij} \cdot \Delta$, где $\phi_{ij} < 0$, т.е. $F < F$.

Замечание. Может случится так, что $\Delta = 0$, тогда $F' = F, x_{ij} = x_{ke} = 0$, но переменная x_{ij} теперь базисная, а x_{ke} — свободная.

Покажем, как работает распределительный метод. При этом в качестве начального плана, возьмем план полученный методом минимальных стоимостей.

Для этого плана $F_1 = 260$. Подсчитаем ϕ_{ij} для свободных клеток. Например ϕ_{11}. Добавляем клетку (1,1). Получаем цикл, указанный а рисунке.

$$
\begin{array}{c|ccc}
+ & - & 1 & 2 \\
10 & 20 & 1 & 2 \\
- & 4 & + & 3 \\
20 & 10 & 5 & 3 \\
7 & 30 & - & 10 \\
3 & - & 2 & 10 \\
\end{array}
$$

$\phi_{11} = 10 - 1 + 5 - 4 = 10 > 0$ аналогично, $\phi_{13} = 2 - 1 + 3 - 2 = 2 > 0$; $\phi_{23} = 3 - 5 + 3 - 2 = -1 < 0$; $\phi_{31} = 7 - 3 + 5 - 4 = 5 > 0$.

Поскольку $\phi_{23} < 0$, добавляем клетку (2,3) и получаем цикл.

$$
\begin{array}{c|cc}
10 & 20 \\
20 & 1 & 2 \\
20 & - & + \\
4 & 10 & 5 \\
3 & 5 & 3 \\
\end{array}
$$
При этом минимум базисных значений переменных, помеченных в цикле знаком - равен 10. Тогда \(\Delta = 10 \) и пересчет по циклу с \(\Delta = 10 \) приводит к новому базисному решению. Поскольку \(x_{22} = x_{33} = 10 \), то оба они примут значение 0, но при этом полагаем \(x_{22} \) свободным переменным, а \(x_{33} = 0 \) – базисным.

Найдем \(\varphi_{ij} \) для этого плана.

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

При этом минимум базисных значений переменных, помеченных в цикле знаком - равен 10. Тогда \(\Delta = 10 \) и пересчет по циклу с \(\Delta = 10 \) приводит к новому базисному решению. Поскольку \(x_{22} = x_{33} = 10 \), то оба они примут значение 0, но при этом полагаем \(x_{22} \) свободным переменным, а \(x_{33} = 0 \) – базисным.

Найдем \(\varphi_{ij} \) для этого плана.

<table>
<thead>
<tr>
<th></th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
</tr>
</tbody>
</table>

Найдем \(\varphi_{ij} \) для этого плана

\[
\varphi_{11} = 10 - 1 - 4 + 3 - 2 + 3 = 9 > 0 \\
\varphi_{32} = 2 - 1 - 2 + 3 = 2 > 0 \\
\varphi_{23} = 5 - 3 - 3 + 2 = 1 > 0 \\
\varphi_{31} = 7 - 4 + 3 - 2 = 4 > 0
\]

Таким образом, условие оптимальности выполнено, и данный план минимизирует функцию \(F \).

\[
F_2 = 20 * 1 + 20 * 4 + 10 * 3 + 40 * 3 = 250
\]

При этом \(F_2 - F_1 = 250 - 260 = -10 = -1 * 10 = \varphi_{23} \Delta \).

Метод потенциалов решения транспортной задачи.

Самым трудоёмким при решении транспортной задачи является процесс нахождения свободной переменной \(x_{ij} \), для которой \(\varphi_{ij} < 0 \). Эта задача решается гораздо быстрее, если использовать метод потенциалов.

Идея метода состоит в переходе к двойственной задаче. Каждому \(i \)-ому ограничению* мы поставим в соответствие переменную \(-u_{i} \), а каждому \(j \)-ому ограничению** - переменную \(v_{j} \), т.е.

\[
-u_{i} x_{i1} + x_{i2} + \cdots + x_{in} = a_{i} \\
v_{j} x_{1j} + x_{2j} + \cdots + x_{mj} = b_{j}
\]

Получаем систему ограничений двойственной задачи

\[
V_{j} - u_{i} \leq c_{ij} \quad i = 1, 2, \ldots; n; j = 1, 2, \ldots, m
\]

Всего \(mn \) ограничений

Замечание: Иногда вместо переменной \(-u_{i} \) берут \(u_{i} \); но технически удобнее проверять «разность потенциалов» \(v_{j} \) и \(u_{i} \).

Целевая функция Ф двойственной задачи имеет вид:

\[
\Phi = a_{1} u_{1} - a_{2} u_{2} - \cdots - a_{n} u_{n} + b_{1} v_{1} + b_{2} v_{2} + \cdots + b_{m} v_{m} \leftarrow \max
\]

Поскольку ограничения транспортной задачи являются равенствами, то двойственные переменные могут быть отрицательными.

На основании теоремы двойственности базисным переменным одной задачи соответствуют свободные переменные двойственной. Так, если \(x_{k} \) – значение базисной переменной, то двойственное решение транспортной задачи, то соответствующее переменной двойственной является свободным, т.е. для \(u_{k}^{*} \) и \(v_{e}^{*} \) - значений двойственных переменных оптимального решения двойственной задачи соответствующее ограничение превращается в равенство, т.е.
v_{ε*}-u_{i*}=C_{ki}. Число базисных переменных транспортной задачи равно m+n-1, а число переменных двойственной задачи равно m+n. Поскольку число уравнений на 1 меньше числа переменных, то одно переменное из них является свободным, и, давая ему произвольное значение, получим значение остальных переменных двойственной задачи. Покажем, что если для всех найденных значений двойственных переменных выполнено неравенство
(A) V_{j}−U_{i}≥C_{ij} i=1,....,m; j=1,2,....,n,
то это будет оптимальным решением двойственной задачи, а значит найденные значения базисных переменных транспортной задачи дают минимум функции F.

Лемма 8 Пусть для клетки (i,j) не выполнено условие (A), т.е. v_{j}−u_{i}>c_{ij}, тогда γ_{ij}<0.

В самом деле, добавим ребро (A_{i},B_{j}) к графу базисного решения. Получается цикл, при этом ребро (A_{i},B_{j}) помечается знаком «+»:

(A_{i}, B_{j})(A_{i}, B_{j})(A_{i}, B_{j}) … (A_{i}, B_{j})

Тогда γ_{ij} = c_{ij} − c_{i,j1} + c_{i,j2} − ... − c_{i,jm}.

Поскольку все ребра, кроме (A_{i},B_{j}) соответствуют базисным неизвестным, то для каждого ребра цикла кроме (A_{i},B_{j}), стоимость равна разности потенциалов

γ_{ij} = c_{ij} − (v_{j1}−u_{i})+(v_{j2}−u_{i}) − ... − (v_{jk}−u_{ik}) = c_{ij} + u_{i} - v_{j} < 0

Из леммы 8 вытекает, что переменное x_{ij} должно быть увеличено, т.е. должно стать базисным, что приведет к уменьшению функции F (или, по крайней мере, оставит её значение прежним)

Отсюда вытекает такой алгоритм решения транспортной задачи методом потенциалов:

1. Находим допустимое решение
2. Фиксируем базисные клетки (базисные неизвестные)
3. Для каждой базисной клетки (i,j) записываем уравнение v_{j}−u_{i}=c_{ij}
4. Решаем эту систему, давая одному из этих неизвестных любое значение
5. Проверяем условие оптимальности V_{j}−U_{i}≥C_{ij} для всех свободных клеток. Если оно выполнено, то полученное решение транспортной задачи оптимально
6. Если для клетки (i,j) условие не выполнено, т.е. v_{j}−u_{i}>C_{ij}, то к графу базисного решения добавляем ребро (A_{i},B_{j}). В полученном цикле помечаем ребра, начиная с ребра (A_{i},B_{j}) последовательно знаками «+» и «−».
7. Рассматриваем клетки (ребра), помеченные в цикле знаком «−» и среди соответствующих им значений выбираем наименьшее. Обозначим его значение Δ и делаем «пересчет по циклу» с этим значением Δ
8. Если мы добавим клетку (i,j), а Δ = x_{ij}, то в новом плане x_{ij} = Δ – базисная, а x_{ij}=0 – свободная переменная. Для этого нового плана переходим к пункту 3 и так до тех пор, пока условие оптимальности не будет выполнено.

Замечание:

1. Целевая функция изменяется на величину v_{ij} * Δ. Иногда рекомендуют выбирать ту клетку, для которой v_{ij} < 0 принимает наибольшее по абсолютной величине значение. Однако это не всегда (за счет Δ) приводит к более быстрому уменьшению функции F. Поэтому иногда разумнее, проверяя подряд клетки, взять первую, для которой v_{ij} < 0, т.е. v_{j}−u_{i} > C_{ij}.
2. Если клетка (I,j) выбрана неверно, т.е. v_{j}−u_{i}<C_{ij}, то это приведет к увеличению целевой функции
3. Если v_{j}−u_{i}>C_{ij}, но Δ=0, то «пересчет по циклу» не меняет целевой функции, поэтому имеет смысл поискать другую клетку, для которой v_{ij} < 0.

37
4. Может случиться так, что минимум достигается для нескольких базисных переменных. Тогда одна из них становится свободной, а остальные – базисными, для которых значения базисных переменных равно нулю.

Пример:
Решим уже рассмотренную задачу методом потенциалов и снова возьмем план, полученный методом минимальных стоимостей.

<table>
<thead>
<tr>
<th>у/v</th>
<th>4</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

положим у2=0. Тогда v1-u2=4, т.е. v1=u2+4=4 аналогично, v2-u2=5, v2=u2+5=5. Теперь, v2-u3=3, т.е. u3=v2-3=5-3=2. Продолжив, получим v3=u3+2=2+2=4
v2-u1=1, а u1=v2-1=5-1=4

Итак, все значения потенциалов найдены. Проверим условие оптимальности
(1,1) v1-u1=4-4=0<10
(1,3) v3-u1=4-4=0<2
(2,3) v3-u2=4-0=4>3
(3,1) v1-u3=4-2=2<7

Итак, снова только для клетки (2,3) условие не выполнено. Отметим, что c23-(v3—у2)=3-4=-1, т.е. что <23 = -1, и это же верно для остальных свободных клеток. Теперь добавляем клетку (2,3), т.е. ребро (A2,В3), получаем цикл и совершаем пересчет по циклу с ∆=10, получаем новый план и находим новые потенциалы

<table>
<thead>
<tr>
<th>у/v</th>
<th>4</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

пусть у2=0. Тогда v1=0+4=4, v3=0+3=3,
u3-3-2=1, v2=1+3=4, u1=4-1=3

Проверим условия оптимальности:
(1,1) v1-u1=4-3=1<10
(1,3) v3-u1=3-3=0<2
(2,2) u2-v2=4-0=4<5
(3,1) v1-u3=4-1=3<7

т.к. условия оптимальности выполнены, то согласно методу потенциалов данный план оптимален.

Решение несбалансированной транспортной задачи
Рассмотрим решение задачи, в которой Σai не равно Σbj . Система ограничений такой задачи несовместна. Если, например, Σai > Σbj, то задача может быть сформулирована так: построить оптимальный план перевозок, минимизирующий суммарные расходы, но при этом не весь груз из пунктов должен быть вывезен. Если Σai > Σbj, то строится фиктивный пункт назначение

\[B_{n+1} \],

для которого \[b_{n+1} = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j \] и \[C_{i,n+1}=0 \], i=1,2,…,m. Если же Σai < Σbj, то, наоборот,

вводится фиктивный пункт отправления \[A_{m+1} \] с \[a_{m+1} = \sum_{j=1}^{n} b_j - \sum_{i=1}^{m} a_i \] и \[C_{m+1,j}=0 \], j=1,2,…,n, и это
означает, что в некоторых пунктах назначения потребности не будут удовлетворены. Рассмотрим пример:

Таблица 1:

<table>
<thead>
<tr>
<th>Пункты назначения \ отправления</th>
<th>B1</th>
<th>B2</th>
<th>Запасы</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>A2</td>
<td>4</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>A3</td>
<td>5</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Потребности</td>
<td>60</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2:

<table>
<thead>
<tr>
<th>Пункты назначения \ отправления</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>Запасы</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>A2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>A3</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Потребности</td>
<td>60</td>
<td>40</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 3:

<table>
<thead>
<tr>
<th>Пункты назначения \ отправления</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>Запасы</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>40</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>A2</td>
<td>4</td>
<td>40</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>A3</td>
<td>20</td>
<td>5</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Потребности</td>
<td>60</td>
<td>40</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Здесь Σai=110> Σbj. Поэтому строим фиктивный пункт отправления B3, для которого b3=110-100=0 и Ci3=0, i=1,2,3

Условие этой задачи отображено в таблице 2. Построим базисное решение методом минимальных стоимостей (Таблица 3)

Заметим, что применяя метод минимальных стоимостей, мы вначале рассматриваем клетки, для которых Cij не равно 0. Найдем потенциал для этого плана.

Проверим условия оптимальности:

(1,2) 1-3=-2<3
(1,3)0-3=-3<0
(2,1)5-0=5>4

Добавляем клетку (2,1), получаем цикл у минимум базисных неизвестных равен 10. Делаем пересчет по циклу с Δ = 10, и снова находим потенциалы.

<table>
<thead>
<tr>
<th>u%/vi</th>
<th>5</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>40</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>+4</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>-20</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Проверяем условия оптимальности
(1,2) \cdot - 1 < 8
(1,3) \cdot - 1 < 0
(2,3) \cdot - 1 < 1
(3,2) + 1 < 8

Т.к. условие оптимальности выполнено, то данный план оптимален. По данному плану из пункта А1 в пункт В1 возем 40 единиц груза, из А2 в В1 и А2 в В2, соответственно 10 и 40 единиц груза. Из пункта А3 в В1 возем 10 единиц груза и 10 единиц в фиктивный пункт В3, т.е. в пункте А3 остается 10 единиц груза. Общие затраты равны \(F = 40 \cdot 2 + 10 \cdot 4 + 40 \cdot 1 + 10 \cdot 5 = 210 \). В заключение приведем полезное для дальнейшего следствия из теоремы двойственности.

Следствие
Пусть известны допустимые решения прямой и двойственной задачи. При этом выполнены следующие условия
Для каждого, отличного от нуля, значения переменной в допустимом решении одной из задач (т.е. эта переменная базисная), соответствующее ограничение является равенством (потому что этому ограничению соответствует свободная переменная двойственной задачи).

Каждому строгому ограничению неравенства соответствует двойственная переменная, равная нулю в допустимом решении. Тогда каждое из допустимых решений прямой и двойственной задач является оптимальным.

Сетевая транспортная задача
Сетевая транспортная задача является обобщением матричной. Если в матричной задаче груз можно было везти только из пунктов отправления («складов») в пункты назначения, т.е. только от поставщика к потребителю, и каждый поставщик был связан с каждым потребителем, то в сетевой задаче грузы можно перевозить с одного склада на другой, от одного потребителя к другому.

Постановка задачи
Железнодорожная сеть состоит из узловых пунктов (погрузки, выгрузки, перевалочных) путей, соединяющих некоторые из них. Каждому узлу Аі сопоставлено число \(Rі \) которое положительно, если \(Аі \) – пункт отправления («склад») и отрицательное, если \(Аі \) – пункт назначения. Для перевалочного пункта \(Rі \) равна нулю, каждому существующему пути из \(Аі \) в \(Аj \) сопоставлено число \(Сіj \) >= 0- стоимость перевозки единицы однородного груза из \(Аі \) в \(Аj \). При этом \(Сіj \) может не быть равным \(Сjі \). Может быть даже так, что путь из \(Аі \) в \(Аj \) существует, а из \(Аj \) в \(Аі \) – нет. Требуется найти такой план перевозок, при котором общая стоимость минимальна, причем все запасы должны быть вывезены, все потребности удовлетворены, а в перевалочных узлах не должно оставаться груза.

Граф сетевой задачи:
каждому узловому пункту сопоставим вершину \(Аі \) графа, помеченную числом \(Rі \). Если существует путь из \(Аі \) в \(Аj \), то вершины \(Аі \) и \(Аj \) соединим ориентированным ребром. Стоимость перевозки единицы груза из \(Аі \) в \(Аj \) укажем справа от ребра (дуги) по её хodu. Полученный граф является ориентированным графом сетевой задачи. Обозначим его Г.

Пример
в данном примере узлы А1 и А5 являются пунктами отправления, узлы А2 и А4 – пункты назначения, А3 – перевалочный пункт. \(Сі3 = 2 \), а \(Сі5 = 5 \). Стоимость перевозки единицы груза из А1 в А4 и из А4 в А1 однинаковая, равна 10.
Математическая модель задачи:
пусть в графе существует ребро AiAj. Обозначим через хij планируемый поток груза по этому ребру. Если же такого ребра в графе нет, то переменная хij не вводится. Общее кол-во груза, вывезенного из узла Ai равно \(\sum xis \), где сумма xis распространяется по всем ребрам, выходящим из вершины Ai.
Аналогично, общее кол-во груза, ввезенного в узел Ai составит сумма \(\sum xwi \), где сумма берется по всем ребрам входящих в вершину Ai. Отсюда получаем \(\sum xis - \sum xwi = Ri \), i=1,2,…,n
таким образом, если A1, A2,…, An – все узлы, мы получаем n ограничений равенств, которые вместе с условием хij>0 образуют систему ограничений сетевой транспортной задачи. Общая стоимость всех перевозок F= \(\sum_{i,j} Cijxij \), где Cij – стоимость перевозки единицы груза по дуге (ребру) AiAj, а сумма берется по всем дугам графа. Таким образом, сетевая транспортная задача является канонической задачей линейного программирования с ограничениями равенствами, минимизацией целевой функции.

Замечание: поскольку целевая функция положительна, то задача имеет решение, если только система ограничений совместна. Если сложить все ограничения, то слева получим 0, поскольку хij войдет со знаком плюс в ограничение для узла Ai и со знаком минус в ограничение для узла Aj. Справа же будем иметь \(\sum_{i=1}^n Ri \).
Следовательно, необходимым условием существования решения является то, что сумма запасов равна сумме потребностей, т.е. \(\sum_{i=1}^n Ri =0 \). Однако, как показывает простой пример, это условие не является достаточным.
Можно указать простые достаточные условия, при которых задача имеет решение:
1. Граф Г должен быть связан
2. Если граф Г содержит ребро AiAj то он содержит и ребро AjAi
3. \[\sum_{i=1}^{R} Ri = 0. \]

Уточним теперь некоторые определения, введенные в матричной транспортной задаче. Цепью мы назвали последовательность ребер, так что любые два соседних ребра имеют общую вершину.
Замкнутая цепь называется циклом. Пусть С – цикл. Попутным назовем ребро цикла, ориентация которого совпадает с направлением выбранного движения в цикле, и встречным в противном случае.

Граф G базисного решения
Для любого базисного решения системы равенств сетевой задачи определим граф G, который является частью графа Г, так что ребро AiAj графа Г принадлежит графу G тогда и только тогда, когда переменная хij является базисной.

Пересчет по циклу
Эта операция определяется аналогично тому, как это делается в матричной задаче. Пусть С – цикл, принадлежащий графу Г, в котором выбрано направление и \(\Delta \)-производное число. Если ребро AiAj является попутным ребром цикла, то положим \(x'_{ij} = x_{ij} + \Delta \), а если встречным, то \(x'_{ij} = x_{ij} - \Delta \), если же ребро не принадлежит циклу, то \(x'_{ij} = x_{ij} \).

Лемма 1
Операция пересчета по циклу переводит базисное решение сетевой задачи в допустимое решение системы её неравенств.
Для доказательства нужно рассмотреть все возможные ситуации. Мы рассмотрим одну. Для остальных доказательство аналогичное. Итак, пусть \(A_i A_j \) – попутное ребро, а \(A_k \) – встречное.

Тогда в ограничение равенство для вершини \(Aj \) хij и xkj войдут со знаком ‘-‘, причем \(x'_{ij} = x_{ij} + \Delta \) и \(x'_{kj} = x_{kj} - \Delta \). Поэтому –xij-xkj=-xij-\(\Delta \)-(xkj-\(\Delta \))=-xij-xkj. Аналогично для остальных трех случаев.

б) \(A_i \rightarrow A_j \rightarrow A_k \)

 с) \(A_i \rightarrow A_j \rightarrow A_k \)

 d) \(A_i \) \(A_j \) \(A_k \)
Лемма 2 Граф G базисного решения не имеет циклов. Для доказательства так же, как и в матричной задаче, можно, сделав пересчет по циклу, изменить базисное решение, не меняя свободные неизвестные, что невозможно.

Замечание: Для того, чтобы при пересчете по циклу все переменные x_{ij} оставались бы неотрицательными, можно, например, взять Δ равными минимальному значению переменных для встречных ребер цикла.

Лемма 3. Граф G содержит все вершины графа Γ. Если бы вершина A_i не принадлежала бы графу G базисного решения, то это означало бы, что все ребра, входящие в A_i и исходящие из неё не принадлежали бы графу G, т.е. соответствующие переменные были бы свободными, а значит, их бы связывало отношение равенства для вершины A_i, но это невозможно, т.к. свободным переменным можно давать любые значения.

Лемма 4. Граф G связан

Сложим теперь все уравнения ограничений, соответствующих всем вершинам из B. Переменные, x_{ij}, соответствующие внутренним ребрам, при этом сократятся, т.к. они входят в уравнение для A_i со знаком \leftrightarrow и в уравнение для A_j со знаком \leftrightarrow. Переменные, соответствующие внешним ребрам, не входят совсем. Переменные, соответствующие входящим и исходящим, являются свободными (т.к. эти ребра не принадлежат графу G) и входят только 1 раз. Таким образом, мы получаем уравнение, связывающее свободные неизвестные, что невозможно. Это означает, что входящих исходящих ребер нет. Поскольку граф G содержит все вершины, то он связан.
Итак, справедлива следующая теорема:

Теорема 1
Граф G базисного решения является деревом, содержащим все вершины графа Γ сетевой задачи.

Следствие 1 Граф G содержит $n-1$ ребро, где n-число всех узлов (всех вершин) графа Γ.
Следствие 2 Ранг системы ограничений равенств сетевой задачи равен $n-1$

Это следует из того, что число ребер графа Γ т.е. число базисных неизвестных, равно $n-1$. Итак, сетевая задача может быть решена как задача линейного программирования, однако, так же, как и в матричной формулировке, её просто решать распределительными методом или методом потенциалов. Мы приведем последний, для чего сначала сформулируем двойственную задачу. В сетевой задаче ищется минимум функции $F^*=\sum_i \sum_j c_{ij} x_{ij}$, или, что-то же самое макс F^*= --

- $F = \sum_i \sum_j (-C_{ij})x_{ij}$

Двойственная задача сетевой транспортной задачи.

Каждому ограничению, соответствующему узлу A_i, сопоставим переменную u_i, которая может быть и отрицательной, поскольку ограничение является равенством. Каждому переменному x_{ij} сетевой задачи соответствует ограничение $u_i-u_j \geq -c_{ij}$.

43
это следует из того, что x_{ij} входит с коэффициентом $+1$ в ограничение ui и с коэффициентом -1 в ограничение uj. Прямая задача является задачей на максимум, значит двойственная является задачей минимума и знаки неравенств \geq. Умножая на (-1) получаем следующую систему ограничений $uj-ui\leq c_{ij}$.

здесь это должно быть выполнено для всех ребер графа Γ.

Целевая функция $\Phi = \Sigma RiUi \rightarrow \min$

Алгоритм решения сетевой задачи методами потенциалов

1. Находим допустимое базисное решение сетевой задачи.
2. Строим граф G, соответствующий этому базисному решению. Граф G связан, не содержит циклов и содержит все вершины сетевой задачи. Число его ребер равно $n-1$.
3. Для каждого ребра графа G, т.е. для каждого базисного неизвестного x_{ij} составляем уравнение $U_j-U_i = C_{ij}$.

Поскольку число уравнений равно $n-1$, а число неизвестных n, то одному из них, любому, присваиваем произвольное значение. Решая систему, находим значения потенциалов.

Комментарии

Так же, как при решении методом потенциалов матричной задачи, мы пользуемся следующим утверждением, вытекающим из теоремы двойственности:

Допустимые решения прямой и двойственной задач являются оптимальными, если они удовлетворяют следующим условиям:

а) каждому отличному от нуля значению переменной одной задачи (т.е. базисному переменному) соответствует ограничение равенство двойственной задачи

б) каждому строгому неравенству ограничению одной задачи соответствует свободное переменное другой задачи, т.е. переменное равно нулю

4. Для полученных потенциалов проверяем условие оптимальности $U_j - U_i \leq C_{ij}$ по всем ребрам графа Γ сетевой задачи. Если это условие выполнено, то согласно комментарию пункт 3 полученного базисное решение дает минимум функции F.

5. Пусть для ребра $A_iA_j \in \Gamma$ условие оптимизации не выполнено, т.е. $U_j - U_i > C_{ij}$.

Присоединяем это ребро к графу G. Тогда полученный граф содержит ровно 1 цикл. Выбираем направление обхода цикла по ребру A_iA_j и делаем пересчет по циклу, где в качестве Δ выбираем наименьшее значение базисных переменных, соответствующих встречным ребрам цикла. Получаем новое базисное решение и переходим опять к пункту 2 до тех пор, пока не получим базисное решение, для которого потенциалы удовлетворяют условию оптимальности.

Обоснование пункта 5, т.е. доказательство того, что каждый пересчет по циклу уменьшает, или, по крайней мере, не увеличивает значение целевой функции $F = \Sigma c_{ij}x_{ij}$, вытекает из двух теорем, доказательство которых аналогично тому, как это делалось в матричной задаче.

Определение: алгебраической суммой стоимостей по циклу называется сумма стоимостей, соответствующих ребрам цикла, взятых со знаком \leftrightarrow для попутных ребер и со знаком `-' для встречных.

Теорема 2: При пересчете по циклу с величиной Δ, значение целевой функции меняется на $\Delta F = \Phi * \Delta$, где Φ - алгебраическая сумма стоимостей по циклу.

Доказательство: При пересчете по циклу Δ поток по каждому попутному ребру увеличивается на Δ, а по встречному – уменьшается на Δ. Следовательно, стоимость перевозок по всем попутным ребрам увеличится на $\Sigma\Delta C_{ij}$, а по встречным уменьшается на $\Sigma\Delta C_{ij}$, где сумма
распространяется по попутным и встречным ребрам цикла. Остальные же потоки не меняются, откуда \(\Delta F = \Sigma \Delta * C_{ij} - \Delta \Sigma * C_{ij} = \Delta (\sum _{i} *C_{ij} - \Sigma ^{-} *C_{ij}) = \Delta \varphi \)

Теорема 3: Пусть AiAj – ребро, присоединяемое к графу G базисного решения. Тогда алгебраическая сумма стоимостей по полученному циклу = \(\varphi_{ij} = C_{ij} - (u_j - u_i) \).

Доказательство такое же, как и в матричной задаче. Следовательно, если для ребра AiAj условие оптимальности не выполнено, т.е. \(u_j - u_i > c_{ij} \), то \(\varphi_{ij} < 0 \), и на основании теоремы 3 целевая функция меняется на \(\Delta F = \varphi_{ij} * \Delta < 0 \), если только \(\Delta \neq 0 \).

Замечание: Как уже отмечалось, базисные переменные могут равняться нулю. При добавлении ребра к графу G может получиться цикл, в котором ребро, соответствующее этому переменному, окажется встречным, т.е. \(\Delta = 0 \), и \(\Delta F = 0 \).

Тогда имеет смысл проверить другие ребра, для которых не выполнено условие оптимальности. Если для всех из них \(\Delta = 0 \), то произойдет рокировка: добавленное свободное ребро становится базисным, для которого значение базисной переменной = 0, а встречное ребро, для которого план был равен 0, становится свободным.

Рассмотрим на примере решения сетевой задачи. Построим базисное решение для задачи приведенного в начале параграфа примера. Построим граф G для данного базисного решения.

Полученный граф содержит 5-1=4 ребра. Граф G связан и не содержит циклов. Решение удовлетворяет всем ограничениям сетевой задачи.

A1: привезли 10 ед и было 10 ед. Вывезли 20ед, т.е. вывезли весь груз
A2: привезли 30ед и вывезли 10ед. Осталось 20ед, как и требовалось.
A3: привезли и вывезли 30ед, так что на складе пусто
A4: привезли 20ед, что и требовалось.
A5: весь груз (30ед) вывезли
F1=30*5+30*6+10*2+20*2=390.

Для отыскания потенциалов положим U5=0, а дальше по стрелкам: U3 = U5 + C33= 0+5=5; U2=U3+C32=5+6=11; U1=U2+C21=11+2=13; U4=U1+C41=13+2=15

Для ребра (A5,A4): U4-U5=15-0=15>C54=3

\(\varphi_{54} = c_{54} - (U_4 - U_5) = 3 - 15 = -12 \)

Добавляем ребро A5A4. В полученном цикле все базисные ребра – встречные.
\(\Delta = x_{21}=10 \). Делаем пересчет по циклу, получаем новый план и новый граф.

F2=20*5+20*6+10*2+10*3=270. \(\Delta F = F_2 - F_1 = 270 - 390 = -120 = (-12) * 10 = \varphi_{54} \Delta \)
Строим новые потенциалы, полагая $U_3=0$. Для ребра (A_1,A_2) $U_2-U_1=11-1=10>C_{12}=1$, поэтому добавляем ребро (A_1,A_2) и получаем цикл, для которого $\Delta=10$. Делаем пересчет по циклу и получаем новый план рисунок 2.

$F_3=10*1+5*10+6*10+20*3=180$

$F_3-F_2=180-270=-90=(-9)10$

Новые потенциалы: $U_5=0$, $U_4=3$, $U_3=5$, $U_2=11$, $U_1=10$. Для ребра (A_4,A_1) $U_1-U_4=10-3=7>2$, поэтому добавляем ребро (A_4,A_1) и получаем цикл. Делаем пересчет по циклу и получаем новый план рисунок 2.

$F_4=20*1+10*2+30*3+0=130$

$F_4-F_3=130-180=-50=(-5)10$

Новые потенциалы: $U_3=0$, $U_4=3$, $U_1=5$, $U_2=6$, $U_3=5$. Для ребер противоположной ориентации проверка не нужна, иначе для них разность потенциалов отрицательна. Итак, условия оптимальности выполнены, данный план дает минимальную стоимость перевозок и $F_{min}=130$.

Замечание. Отсюда следует, что $\max(-F)=-130$. Проверим, что для этих значений потенциалов $\Phi=\sum R_j U_i = -130$. В самом деле, $6*(-20)+5(10)+3*(-20)+9*30+5*0=-130$.

Полезные советы:

1. При построении начального базисного плана следует сначала проанализировать граф сетевой задачи. В приведенном решении мы выбрали самый неудачный план, а именно, везли самый большой груз самым дорогим путем.

2. Если построенный граф окажется несвязанным, то добавляем ребро с нулевой перевозкой так, чтобы не было циклов.

3. Если в построенном графе допустимого решения окажутся циклы, то сделав пересчет по циклу можно их разорвать.
4. Проверку условия оптимальности достаточно проводить только для одного из ребер
(A_iA_j) и (A_jA_i), а именно, для того, для которого разность потенциалов конца и начала
положительна, т.к. все C_{ij} ≥ 0.

5. При проверке условия оптимальности сначала проверяем для тех ребер, для которых
разность потенциалов наибольшая.

Задачи о назначениях
В зависимости от параметров, которые мы хотим оптимизировать, меняются формулировки
задач о назначении. Мы остановимся на трех.

Задача 1.
В бюро по трудоустройству обратилось m безработных. С другой стороны, поступило n заявок
от работодателей. Будем полагать, что каждый из обратившихся способен занять хотя бы одну
из предложенных вакансий, а на каждую вакансию найдется хотя бы один работник, способный
ее выполнять. Требуется трудоустроить максимальное число безработных. При этом должны
быть выполнены 2 условия:

А. каждый работник занимает только одну ставку (нет совместителей).
Б. на каждую вакансию назначается только один работник (нет полставочников)

Задача 2.
Для выполнения n работ нанимает n работников. Пусть a_{ij} ≥ 0, производительность i-го
работника при выполнении j-ой работы. Необходимо распределить n работников по n работам так,
чтобы суммарное производительство была бы наибольшей, при этом должны быть
выполнены условия A и B.

Замечание 1. Если число работников m > n, то можно ввести m-n фиктивных работ, для которых
a_{ij} = 0 при всех i = 1,2,…, m и j = n+1,…, m Далее, в силу отрицательности a_{ij} (i,j=1,2,…,m) каждый
работник должен быть назначен на работу, поскольку в противном случае всегда
можно увеличить суммарную производительность использованного рабочего персонала.

Замечание 2. Если a_{ij} > 0 – время, за которое i-ый работник выполняет j-ую работу, (i,j=1,…,n)
то задача может быть сформулирована и так: распределить работников по рабочим местам так,
чтобы суммарное время выполнения всех работ было бы наименьшим.

Задача 3.
На конвейере n операций, a_{ij} – производительность i-го работника на j-ой операции.
Распределить n работников по n операциям так, чтобы производительность конвейера была бы
максимальной. Для данного распределения n работников по n операциям производительность
конвейера – это наименьшая из производительностей, расставленных работников («узкое
место»). Таким образом, задача сводится к отысканию максимума минимумов
производительностей для возможных распределений n работников по n операциям.

Для решения задач о назначении воспользуемся геометрической интерпретацией, так же, как
при решении транспортной задачи. Каждому работнику сопоставим вершину графа A_1, A_2,
…A_m, а каждой работе – вершину B_1,B_2,…, B_n.
Пусть i-ый работник способен выполнять работы j_1, j_2, …, j_k. Тогда соединим ребром
вершину A_i с вершинами B_{j_1}, B_{j_2},…, B_{j_k}. Полученный граф называется двудольным. Отметим,
что вершины A_i не соединены ребром друг с другом, и то же самое для вершин B_j.
Паросочетание: распределение работников по работам (условия A,B) означает выбор ребер
двудольного графа так, что никакие два ребра не имеют общей вершины. Такой набор ребер
называется паросочетанием.
Мощность паросочетания называем числом ребер в нем.
Дадим теперь формулировки задач о назначениях в новых терминах.
Задача I
Для данного двудольного графа найти паросочетание наибольшей мощности.

Задача II
Дан полный двудольный граф \((A_i, B_j); i, j = 1, 2, ..., n\) Каждому ребру графа поставлено в соответствие число \(a_{ij} \geq 0\), его “вес”. Найти паросочетание мощности \(n\), для которого сумма весов составляющих его ребер принимала бы максимальное значение.

В другой формулировке минимизируется сумма весов.

Задача III
Дан полный двудольный граф, \(a_{ij} \geq 0\) вес каждого ребра \((A_i, B_j); i, j = 1, 2, ..., n\). Найти паросочетание мощности \(n\), для которого минимальный из весов выбранных ребер принимал бы максимальное значение.
В дальнейшем будем различать максимальное и наибольшее паросочетание.

Максимальным назовем паросочетание, которое при добавлении любого ребра двудольного графа перестает быть паросочетанием.

Наибольшим называется паросочетание наибольшей мощности.
Ясно, что наибольшее паросочетание является максимальным, но как показывает пример, обратное неверно.

Пример 1.

\[
\begin{array}{cccc}
A_1 & A_2 & A_3 & A_4 \\
B_1 & & B_2 & \\
 & B_3 & & \\
 & & B_4 & \\
\end{array}
\]

Для данного двудольного графа паросочетание \((A_1B_2),(A_2B_3),(A_3B_4)\) является максимальным, т.к. каждое из остальных ребер имеет с одним из указанных ребер общую вершину.
Это паросочетание не является наибольшим, т.к. паросочетания \((A_1B_2),(A_2B_1),(A_3B_4),(A_4B_3)\) – наибольшее.

Матричная формулировка задач о назначениях.
Каждому двудольному графу можно поставить в соответствие матрицу размерности \(m \times n\). Если \(A_i, B_j\) -вершины двудольного графа, то

\[
a_{ij} = \begin{cases}
1, & \text{существует ребро } (A_i, B_j) \\
0, & \text{ребра } (A_i, B_j) \text{ нет}
\end{cases}
\]

\(i = 1, 2, ..., m; j = 1, 2, ..., n\).

Для задач II и III \(a_{ij}\) – веса соответствующих ребер.
Тогда паросочетание – это такой выбор клеток матрицы, что никакие две не лежат в одной строке или в одном столбце.
В задаче I требуется найти наибольшее число клеток, обладающих этим свойством.
В задаче II нужно найти n клеток с этим свойством, для которых сумма элементов (весов) принимала максимальное или минимальное значение.

В задаче III ищется n клеток с этим свойством, для которых минимальное значение веса было бы максимальным.

Венгерский алгоритм.
Алгоритм построения максимального паросочетания.

Выберем произвольное ребро (произвольную единицу матрицы) и вычеркнем все ребра, имеющие с выбранным общую вершину (вычеркнем строку и столбец, на пересечении которых стоит выбранная единица).

Продолжим эту процедуру до тех пор, пока все ребра не будут вычеркнуты (вычеркнуты все единицы матрицы).

Полученный набор ребер (единиц) и будет максимальным паросочетанием, что вытекает из самого алгоритма.

Цепь увеличивающая паросочетание.

Пусть M – произвольное паросочетание. Цепью, его увеличивающей, назовем цепь, удовлетворяющую следующим условиям:

1. цепь начинается и кончается ребрами, не принадлежащими паросочетанию.
2. два соседних ребра цепи имеют общую вершину.
3. из двух соседних ребер цепи одно принадлежит M, а другое не принадлежит M.

Пример 1.

![Diagram](image)

В примере 1 цепь $(A_2B_1),(A_2B_3), (A_3B_3)$ увеличивает паросочетание, а цепь $(A_1B_2), (A_3B_2), (A_3B_4), (A_4B_4)$ нет, так как она начинается ребром A_1B_2, принадлежащим паросочетанию.

Теорема 1

Паросочетание является наилучшим тогда и только тогда, когда не существует цепи, увеличивающей паросочетание.

Доказательство: Пусть такая цепь существует. Добавим к паросочетанию ребра цепи, не принадлежащие ему, и выкинем ребра цепи, принадлежащие паросочетанию. Число ребер (вместе с остальными ребрами паросочетания) увеличится на 1.

При этом добавленные ребра не будут иметь общих вершин с остальными ребрами паросочетания, т.к у концов цепи одна вершина не принадлежит паросочетанию, а другая принадлежит выкинутому ребру. У внутренних ребер цепи обе вершины принадлежат выкинутым ребрам паросочетания. Итак, в этом случае паросочетание можно увеличить.

Обратно, пусть для паросочетания M не существует увеличивающей цепи, но оно не наилучше, и паросочетание N содержит, по крайней мере, на одно ребро больше. Пусть M множество ребер такое, что каждое ребро принадлежит или M или N, но не M и N одновременно. Тогда граф $M +$ состоит либо из цепей, либо из циклов.
таких, что из двух соседних ребер одно принадлежит M, а другое N.
Каждый цикл должен содержать одинаковое число ребер из M и из N.
Поскольку мощность N больше мощности M, то хотя бы одна цепь
содержит ребер из N больше, чем из M, но это будет цепь, увеличивающая
M, что противоречит предположению и доказывает теорему.

Замечание
Существует алгоритм, позволяющий находить увеличивающие цепи.
В небольших графах приходится находить их методом перебора, помня, что начинаться и
кончаться они должны в вершинах, не принадлежащих паросочетанию.

Пример 2
Выберем единицы так, как указано. Очевидно, полученное паросочетание максимально (все
единицы лежат в строках и столбцах, принадлежащих выбранным). Т.к размерность матрицы
5х5, а выбрано 4 единицы, то, смотрим, нельзя ли паросочетания увеличить. Поскольку
выбранных единиц нет в последней строке и в последнем столбце, то увеличивающая цепь
может заканчиваться только в них. Она указана на рисунке. Тогда получаем новое
паросочетание, которое и является наибольшим.

Таким образом, венгерский метод позволяет решить задачу I. Заметим, что
мощность наибольшего паросочетания не больше, чем min(m,n).

Алгоритм решения задач о конвейере.
При решение задачи “вручную” клетки, для которых a_{ij}=0 будем оставлять пустыми.
Выберем паросочетание мощности P (стараясь в каждой строке выбирать по возможности
наибольшее число) и найдем его “узкое место”.
Заменим данную матрицу другой, оставляя пустыми клетки, для которых a_{ij} не
превосходит “узкого места”. Выбирать такую клетку бессмысленно, т.к это не увеличивает
“узкое место”.
Продолжаем процедуру до тех пор, пока нельзя будет найти паросочетание мощности P
среди оставшихся пустых клеток.
Тогда паросочетание, найденное на предыдущем шаге и решает задачу III.

Пример 3
1 шаг.
8 15 3 4
7 3 4 6 5
5 8 3 4 7
8 3 1 2
9 5 4 3
2 шаг.
8 15 3 4
7 3 4 6 5
5 8 3 4 7
8 3 1 2
9 5 4 3
3 шаг.
8 15 6 5
7 5 8 7
8
9 5
Узкое место 2. Узкое место 4. Нельзя найти паросочетание мощности 5.
Третий столбец пустой.

50
Комментарии:
Стараясь выбрать в каждой строке последовательно наибольший элемент, вынуждены выбрать в четвертой строке 2 и это "узкое место".
В четвертой строке можно выбрать только 8, тогда в пятой строке только 5, а в третьей только 7, но тогда в первой строке нельзя ничего выбрать, т.е. нельзя найти паросочетания мощности 5, поэтому решением задачи будет распределение, полученное на втором шаге с "узким местом".
Таким образом, оптимальным является следующие назначения:
1 работник на 5 операцию
2 работник на 4 операцию
3 работник на 2 операцию
4 работник на 1 операцию
5 работник на 3 операцию
При этом производительность конвейера равна 4. Заметим, что "проблемной" является 3 операция, на которой производительность ни одного работника не превосходит 4.

Решение задачи II о назначениях.
Алгоритм решения задачи II описывается на 2 момента:
Эту задачу можно сформулировать как задачу линейного программирования, составить двойственную задачу. Тогда, если удаётся найти допустимые решения обеих задач, удовлетворяющие требованиям, указанным в конце главы I, то это и будет оптимальное решение задачи о назначениях.
При построении допустимого решения прямой задачи используется известная теорема Ф. Холла о свадьбах (1935 г).

Теорема 2 (Ф. Холла)
В некотором обществе N юношей и П девушек. Каждый юноша знаком с несколькими девушками, а каждая девушка знакома с несколькими юношами. Для того, чтобы можно было сыграть N свадеб, и при этом каждый юноша женился на знакомой ему девушке необходимо и достаточно, чтобы любые k юношем (1 ≤ k ≤ P) были в совокупности знакомы по меньшей мере с k девушками.

Доказательство.
Необходимость условия очевидна. Докажем достаточность индукцией по P. Ясно, что при P=1 теорема очевидна.
То, что любые k юношей в совокупности знакомы по меньшей мере с k девушками означает, что либо найдутся такие m юношей (m < n), которые знакомы ровно с m девушками, либо на самом деле, любые k юношей в совокупности знакомы по крайней мере с k+1 девушкой. Во втором случае если взять любого юношу и женить его на любой знакомой девушке, то для остальных n-1 юношей остается верным первоначальное условие, и по предложению индукции мы можем женить этих n-1 юношей на знакомых девушках, и теорема верна.
Пусть теперь найдутся такие m юношей (m<n), которые знакомые ровно с m девушками в совокупности. По условию, любые k юношей их этих m юношей в совокупности знакомы по крайней мере с k девушками, очевидно, их этих m девушек.
Поэтому по предположению индукции этих m юношей можно женить на знакомых им девушках. Остается еще n-m юношей. Но любые h из них (1 ≤ h ≤ n-m) должны быть знакомы по меньшей мере с h девушками из оставшихся, поскольку в противном случае эти h юношей с уже выбранными m юношами будут знакомы меньше, чем h+m девушками, а это противоречит условию теоремы. Следовательно, для этих n-m юношей выполнено условие теоремы, и по
индуктивному предположению, мы также можем их женить на знакомых девушках. Это доказывает теорему Холла.
Сформулируем теперь задачу II как задачу линейного программирования. Выбор паросочетания мощности \(n \) означает выбор в каждой строке и каждом столбце ровно одну клетку, или, если интерпретировать двудольный граф матрицей, выбор в каждой строке и в каждом столбце ровно одну 1.
Выбор этих единиц равносилен выбору решения двух систем линейных уравнений:

\[
\begin{align*}
\sum_{j=1}^{n} X_{ij} &= 1; \quad i = 1,2,\ldots,n \\
\sum_{i=1}^{n} X_{ij} &= 1; \quad j = 1,2,\ldots,n
\end{align*}
\]

где \(X_{ij} \geq 0 \) целочисленное решение (в действительности, \(X_{ij} \) равно либо 0 либо 1)

Целевая функция имеет вид \(F = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{ij} \) max

Двойственная задача при этом выглядит так

\[
\begin{align*}
U_i + V_j &= a_{ij} \quad i,j = 1,\ldots,n \\
\Phi &= \sum_{i=1}^{n} U_i + \sum_{j=1}^{n} V_j \quad \text{min}
\end{align*}
\]

Будем предполагать, что производительности или эффективности \(a_{ij} \) являются целыми числами.
Если это не так, то выбрав нужный масштаб, можно сделать их целыми.

Описание алгоритма.

1. Выберем потенциалы \(U_i, V_j \) следующим образом: \(U_i = \max a_{ij}, V_j = 0 \)
2. Рассмотрим все такие клетки, что \(U_i + V_j = a_{ij} \). Ясно, что их, по крайней мере, \(n \).
3. Построим двудольный граф \(A1,A2,.., An, B1,B2,.., Bn \) так что вершины \(Ai \) и \(Bj \) соединены ребром тогда и только тогда, когда \(U_i + V_j = a_{ij} \).
4. Для этого двудольного графа проверим условия теоремы Холла. Если оно выполнено, то существует паросочетание мощности \(n \). Найдем его венгерским методом, указанным выше. Выбор этого паросочетания означает выбор допустимого решения систем ограничений прямой задачи. Если теперь \(X_{ij}=1 \), то \(U_i + V_j = a_{ij} \). Поскольку все переменные, не входящие в паросочетание, равны 0, то выполнены условия следствия из теоремы двойственности, а потому данное паросочетание и есть решение Задачи II. Оптимальное значение целевой функции равно сумме весов клеток паросочетания, но для них

\[
a_{ij} = U_i + V_j. \quad \text{Следовательно } F_{\text{max}} = \sum_{i,j} a_{ij} X_{ij} = \Phi_{\text{min}} = \sum_{i=1}^{n} U_i + \sum_{j=1}^{n} V_j
\]

5. Пусть условие теоремы Холла не выполнено, это значит, что существует такое множество вершин

\[
A = \{ Ai1, Ai2,\ldots Aik \}
\]

(“юношей”), которые в совокупности соединены ребрами(“знакомы”) с меньшим количеством вершин \(B = (Bj1, Bj2,\ldots BjS), k>S \)
Определим новые значения потенциалов:

\[
\begin{align*}
U_i & = U_{i-1}, \text{ если } A_i \in A \\
& = U_i, \text{ если } A_i \notin A
\end{align*}
\]

\[
\begin{align*}
V_j & = V_{j+1}, \text{ если } B_j \in B \\
& = V_j, \text{ если } B_j \notin B
\end{align*}
\]

Проверим, что новый набор потенциалов по-прежнему удовлетворяет условию двойственной задачи.

если \(A_i \in A \), то \(U_i = U_i \), а \(U_j \geq U_j \), а потому \(U_i + U_j \geq a_{ij} \).

если \(A_i \in A \) и \(B_j \in B \), то \(U_i + V_j = U_i-1+V_j+1 = U_i+VU_j \geq a_{ij} \).

если \(A_i \in A \), но \(B_j \in B \), тогда \(U_i + V_j > a_{ij} \).

В силу целочисленности \(a_{ij} \), \(U_i + U_j = U_i-1+M_j > a_{ij} - 1 \), т.е сумма потенциалов либо станет равной \(a_{ij} \) либо по-прежнему будет больше \(a_{ij} \).

Целевая функция \(\Phi = \sum U_i + \sum V_j \) уменьшится на \(k \) и увеличится на \(s \), т.е. уменьшится на \(k-s \).

\(\Phi' = \Phi - (k-s) < \Phi \)

По новым потенциалам строим новый граф, и снова проверяем условия Холла. В силу конечности графа, целочисленности потенциалов и уменьшения на каждом шаге функции \(\Phi \), указанный процесс оборвется на конечном шаге и даст решение задачи II о назначениях.

Пример 4
Рассмотрим матрицу производительностей.

<table>
<thead>
<tr>
<th>VW</th>
<th>0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 4 5 7</td>
</tr>
<tr>
<td>9</td>
<td>2 3 8 1</td>
</tr>
<tr>
<td>7</td>
<td>2 4 5 3</td>
</tr>
<tr>
<td>5</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>8</td>
<td>8 5 3 4</td>
</tr>
</tbody>
</table>

Положим \(U1=8, U2=9, U3=7, U4=5, U5=8; V1=V2=V3=V4=V5=0 \) и построим граф.
Тогда \(A=(A1, A2, A3, A4) B=(B5) K=4 S=1 \)

Получаем новые значения потенциалов и отмечаем клетки, для которых \(U_i + U_j = a_{ij} \).
И снова меняем потенциалы.

Для этого графа условия Холла выполнено. Найдем паросочетание мощности 5.

При этом $\Phi=\sum U_i + \sum U_j=0+0+2+2+3+5+6+4+2+8=32$

Замечание.

Этот же метод позволяет решить задачу $F=\sum a_{ij} X_{ij}$ min.

Для этого будем искать максимум функции $G=C-F$, где $C=nM$, здесь n- размерность матрицы, а $M=(\max a_{ij})+1$. В самом деле, $G=nM-\sum a_{ij} X_{ij}=\sum (M-a_{ij}) X_{ij}$, поскольку $\sum X_{ij}=n$. Обозначая $C_{ij}=M- a_{ij}$ приходим к рассмотренной выше задаче.
Пример 5

Здесь M=10 Cij=10-aij

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

A=(A1, A3, A4)
B=(B1)
K=3 S=1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A=(A2, A5)
B=(B4)
K=2 S=1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A=(A2, A5) B=(B4)
K=2 S=1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A=(A1, A2, A3, A4)
B=(B1, B2, B4)
K=4 S=3

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A=(A1, A2, A3, A4, A5)
B=(B1, B2, B3, B4)
K=5 S=4

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A=(A1, A3)
B=(B1)
K=2 S=1
Теперь условие Холла выполнено и существует паросочетание мощности 5.

Проследим, как меняется функция G.

Для первого шага $G_1=44$. Затем $K-S=2$ и $G_2=44-2=42$ и далее $G_3=41=42-(2-1)$; $G_4=40=41-(2-1)$; $G_5=39=40-(4-3)$; $G_6=38=39-(5-4)$; $G_7=37=38-(2-1)$.

Здесь в скобках указывается разность $K-S$.

Алгоритм Мака решения задачи II о назначениях.

Будем решать задачу $\min F=\sum_{ij} a_{ij} x_{ij}$.

Описание алгоритма.

Будем иллюстрировать алгоритм на конкретном примере. Пусть дана матрица расходов.

Шаг 0.
$V=\emptyset$, V^\prime-все столбцы.

Шаг 1.
Выбрать из множества V^\prime столбцы, содержащие больше одного подчеркнутого элемента. Перевести эти столбцы из множества V^\prime в множество V. В данном примере $V=1$, $V^\prime=2,3,4$.

Шаг 2.
Для каждого столбца из V и каждого отмеченного в нем элемента в строке находим $\min(d_{ij} - b_{ij})=d_{ij}$: b_{ij} отмеченный элемент jo столбца, входящего в V, а затем $d_{jo}=\min d_{i,jo}$. И $d=\min d_{jo}$.

В данном примере $jo=1$, $d_{1,1}=3$, $d_{3,1}=2$, $d_{4,1}=2$. Находим $d_{jo}=\min d_{i,jo}$, а затем $d=\min d_{jo}$.

Поскольку $jo=1$, то $d_{jo}=d_{1,1}=2=d$.

Пусть этот минимум достигается на клетке (i_1,j_1), где $j_1\in V^\prime$.

В данном случае минимум достигается в двух клетках $(3,3)$ и $(4,3)$.

Шаг 3.
Увеличить все элементы всех столбцов из V на d. В данном случае это первый столбец.

Получаем матрицу
Шаг 4.
'Элемент ai_1, j_1 – 'кандидат'. Отмечаем его точками.

Шаг 5.
Если в столбце j_1 уже есть отмеченный элемент, то присоединить этот столбец к V и перейти к шагу 2. В противном случае перейти к шагу 6. В данном примере $j_1=3$. В третьем столбце уже есть отмеченный элемент, поэтому $V=1,3, V'=2,4$. $d_{1,1}=1, d_{3,1}=3, d_{4,1}=3; d_1=1$.
$d_{2,3}=0, d_{3}=0; d=0$. Этот минимум достигается в клетке (2,4). Т.к. $d=0$, то матрица не меняется. В столбце 4 нет отмеченного элемента, поэтому переходим к шагу 6.

Шаг 6.
В столбце j_1 нет подчеркнутых элементов. Подчеркнуть полностью элемент ai_1, j_1 (из кандидатов перевести в подчеркнутые.)

Шаг 7.
Убрать подчеркивание элемента ai_1, j_0, где $j_0 \in V$.
В результате шага 6 подчеркиваем элемент $a(2,4)$, а согласно шагу 7 убираем подчеркивание a_{23}.
Получаем:

Шаг 8. Если столбец j_0 не содержит других подчеркнутых элементов, то он должен содержать кандидата. В этом случае перейдем к шагу 6, взяв в качестве элемента ai_1,j_1 этого кандидата, а затем к шагу 7.

Замечание
В данном примере можно было бы взять не a_{33}, а a_{43}.
Если же столбец j_0 содержит еще один подчеркнутый элемент (в третьем столбце теперь подчеркнут a_{33}), то этап заканчивается. Если при этом остался столбец без подчеркнутых элементов (таким будет второй столбец), то возвращаемся к началу.
Теперь снова $V=1, V'=2,3,4$. $d_{11}=1, d_{41}=0, d=0, (i_1,j_1)=(4,3)$.

\[
\begin{array}{cccc}
3 & 4 & 8 & 5 \\
5 & 5 & 1 & 1 \\
3 & 7 & 3 & 6 \\
4 & 9 & 4 & 7 \\
\end{array}
\]

\[
\begin{array}{cccc}
3 & 4 & 8 & 5 \\
5 & 5 & 1 & 1 \\
3 & 7 & 3 & 6 \\
4 & 9 & 4 & 7 \\
\end{array}
\]
Не меняя матрицу, т.к \(d = 0 \), полагаем \(V = 1.3 \ V' = 2.4 \). Тогда \(d_{11} = 1, d_{41} = 3, d_{33} = 3 \) и \(d = 1 \). Увеличиваем элементы первого и третьего столбцов на 1.

<table>
<thead>
<tr>
<th>4</th>
<th>4</th>
<th>9</th>
<th>5</th>
<th>(UV)</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>8</th>
<th>1</th>
<th>4</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>a(_{1.1}) = a12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Поскольку во втором столбце нет отмеченных элементов, отмечаем \(a_{12} \) и зачеркиваем метку a11.

Получаем:
Теперь в каждом столбце есть отмеченный элемент, алгоритм завершен. Выбранное паросочетание состоит из клеток (4,1),(1,2),(3,3),(2,4) и \(F_{\text{min}} = 2 + 4 + 3 + 1 = 10 \)

Комментарии.
Не приводя обоснования метода, поясним некоторые моменты. Если, выбрав в каждой строке минимальный элемент, окажется, что отмеченные элементы есть в каждом столбце, то это и будет оптимальным паросочетанием.
В противном случае есть хотя бы один столбец, назовем его “плохим”, в котором более одного отмеченного элемента. Далее будем искать “кандидатов” на замену, т.е. такой элемент (их может быть несколько) вес которого минимально отличается от веса одного из отмеченных элементов “плохого” столбца. Если хотя бы один из “кандидатов” лежит в пустом столбце, то переводим “кандидата” в отмеченные и убираем соответствующий отмеченный в “плохом” столбце, тем самым уменьшаем на единицу число пустых столбцов. В противном случае те столбцы, в которых есть “кандидаты” и отмеченные элементы также называем “плохими” и ищем новые “кандидаты” до тех пор пока не найдем “кандидата” в пустом столбце.

Решение методом Мака задачи на максимум.
При решении этой задачи в каждой строке ищем максимальный элемент, а затем элементы столбцов множества \(V \) уменьшаем на \(d \).

<table>
<thead>
<tr>
<th>1</th>
<th>4</th>
<th>8</th>
<th>5</th>
<th>(U)</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>8</th>
<th>5</th>
<th>(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“кандидат” a3.4

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>8</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>8</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Данное паросочетание оптимально. \(F_{\text{max}} = 3 + 9 + 8 + 6 = 26 \).

В заключение решим ту же задачу первым методом.

58
ЗАДАНИЕ №1

Составить двойственную задачу, решить ее геометрически и восстановить решение исходной задачи.

\[\text{AX} = B, \ x_0 \geq 0, \]
\[F(x) = c_0 + CX \rightarrow \min \]
\[c_0 = 1, \ C = (0 \ 1 \ 4 \ 0 \ 2 \ 6) \] для 1-й группы
\[c_0 = 2, \ C = (0 \ 4 \ 2 \ 0 \ 6 \ 1) \] для 2-й группы
\[c_0 = 3, \ C = (0 \ 2 \ 6 \ 0 \ 1 \ 4) \] для 3-й группы
\[c_0 = 4, \ C = (0 \ 6 \ 1 \ 0 \ 4 \ 2) \] для 4-й группы
<table>
<thead>
<tr>
<th>№ Варианта</th>
<th>A</th>
<th>В</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 3 -1 -1 -4 2</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>1 1 3 1 2 0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1 4 -3 -3 -7 -3</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>1 0 5 2 5 -1</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>1 5 -5 3 -10 4</td>
<td>-11</td>
</tr>
<tr>
<td></td>
<td>1 -1 7 3 8 -2</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>2 5 0 -1 -5 3</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>2 3 4 1 1 1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>3 7 1 -1 -6 4</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>3 5 5 1 0 2</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1 4 -3 -2 -7 3</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>1 1 3 1 2 0</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>1 3 -1 -1 -4 2</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>1 0 5 2 5 -1</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>1 5 -5 3 -10 4</td>
<td>-11</td>
</tr>
<tr>
<td></td>
<td>1 1 3 1 2 0</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1 3 -1 -1 -4 2</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>1 -1 7 3 8 -2</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>2 5 0 -1 -5 3</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>1 1 3 1 2 0</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>1 3 -1 -1 -4 2</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>2 3 4 1 1 1</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>3 7 1 -1 -6 4</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>1 1 3 1 2 0</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>1 3 -1 -1 -4 2</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>3 5 5 1 0 2</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>1 4 -3 -2 -7 3</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>1 -1 7 3 8 -2</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>2 5 0 -1 -5 3</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>1 -1 7 3 8 -2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1 5 -5 3 -10 4</td>
<td>-11</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>16</td>
<td>1 0 5 2 5 -1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3 7 1 -1 -6 4</td>
<td>-1</td>
</tr>
<tr>
<td>18</td>
<td>1 3 -1 -1 -4 2</td>
<td>-3</td>
</tr>
<tr>
<td>19</td>
<td>1 3 -1 -1 -4 2</td>
<td>-3</td>
</tr>
<tr>
<td>20</td>
<td>2 5 0 -1 -5 3</td>
<td>-2</td>
</tr>
<tr>
<td>21</td>
<td>3 7 1 -1 -6 4</td>
<td>-1</td>
</tr>
<tr>
<td>22</td>
<td>2 5 0 -1 -5 3</td>
<td>-2</td>
</tr>
<tr>
<td>23</td>
<td>1 4 -3 -2 -7 3</td>
<td>-7</td>
</tr>
<tr>
<td>24</td>
<td>1 1 3 1 2 0</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>1 1 3 1 2 0</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>1 1 3 1 2 0</td>
<td>5</td>
</tr>
<tr>
<td>27</td>
<td>1 0 5 2 5 -1</td>
<td>9</td>
</tr>
<tr>
<td>28</td>
<td>2 3 4 1 1 1</td>
<td>6</td>
</tr>
<tr>
<td>29</td>
<td>1 1 3 1 2 0</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>3 5 5 1 0 2</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>1 0 5 2 5 -1</td>
<td>9</td>
</tr>
<tr>
<td>32</td>
<td>1 1 7 3 8 -2</td>
<td>13</td>
</tr>
</tbody>
</table>
ЗАДАНИЕ №2
Решить транспортную задачу

<table>
<thead>
<tr>
<th>запасы</th>
<th>потребности</th>
<th>для 1–ой группы</th>
<th>для 2–ой группы</th>
<th>для 3–ой группы</th>
<th>для 4–ой группы</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 60 50 40</td>
<td>10 50 50 50 10 20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>60 60 70 70</td>
<td>10 40 60 50 40 10 20</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>50 40 40 50</td>
<td>10 60 40 50 10 10</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>60 60 60 60</td>
<td>20 60 40 50 10 10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>№ вар.</th>
<th>Стоимости перевозок</th>
<th>№ вар.</th>
<th>Стоимости перевозок</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3532314 2421203 464 3 4</td>
<td>1</td>
<td>3532314 2421203 464 3 4</td>
</tr>
<tr>
<td></td>
<td>25 363231 4 464 3 25</td>
<td>2</td>
<td>45323 1 4 24212 0 3 464 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 35 3632314</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>464 34 25</td>
</tr>
<tr>
<td>2</td>
<td>363231 4 2421203 4 644 3 4</td>
<td>3</td>
<td>353331 4 2421 2 0 3 464 3</td>
</tr>
<tr>
<td></td>
<td>25 363231 4 464 3 425</td>
<td>4</td>
<td>425 363231 4 464 3 425</td>
</tr>
<tr>
<td>3</td>
<td>353232 4 2 421203 4 643 4 5</td>
<td>5</td>
<td>38 3231 5 242 120 3</td>
</tr>
<tr>
<td></td>
<td>3 63231 4 4 643 4 5</td>
<td>6</td>
<td>246 342 5 363 231 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>464 342 5</td>
</tr>
<tr>
<td>4</td>
<td>353 231 4 242 220 3 464</td>
<td>7</td>
<td>3532 31 4 2421 23 464 34 2 5</td>
</tr>
<tr>
<td></td>
<td>342 5 363 231 4 464 34 2</td>
<td>8</td>
<td>2421 21 3 4643 42 5 3632</td>
</tr>
<tr>
<td></td>
<td>31 4 4643 42 5</td>
<td></td>
<td>463 231 4</td>
</tr>
<tr>
<td>5</td>
<td>353 231 4 242 12 0 4 464</td>
<td>9</td>
<td>35323 1 4 14212 0 3</td>
</tr>
<tr>
<td></td>
<td>34 2 5 363 231 4 464 34 2</td>
<td>10</td>
<td>4643 2 5 36323 1 4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>4643 2 5</td>
</tr>
<tr>
<td>6</td>
<td>353 23 1 4 242 12 0 4 464</td>
<td>11</td>
<td>3 5 3 2 3 1 4 2 4 2 1 2 0 3</td>
</tr>
<tr>
<td></td>
<td>34 2 5 363 231 4 464 34 2</td>
<td>12</td>
<td>5 6 4 3 4 2 5</td>
</tr>
<tr>
<td></td>
<td>2 5</td>
<td></td>
<td>3 6 3 2 3 1 4 4 6 4 3 4 2 5</td>
</tr>
<tr>
<td>7</td>
<td>353 23 1 4 242 12 0 4 464</td>
<td>13</td>
<td>3 5 3 2 3 1 4 2 4 2 1 2 0 3</td>
</tr>
<tr>
<td></td>
<td>34 2 5 363 231 4 464 34 2</td>
<td>14</td>
<td>5 6 4 3 4 2 5</td>
</tr>
<tr>
<td></td>
<td>2 5</td>
<td></td>
<td>3 6 3 2 3 1 4 4 6 4 3 4 2 5</td>
</tr>
<tr>
<td>8</td>
<td>353 23 1 4 242 12 0 4 464</td>
<td>15</td>
<td>3 5 3 2 3 1 4 2 4 2 1 2 0 3</td>
</tr>
<tr>
<td></td>
<td>34 2 5 363 231 4 464 34 2</td>
<td>16</td>
<td>5 6 4 3 4 2 5</td>
</tr>
<tr>
<td></td>
<td>2 5</td>
<td></td>
<td>3 6 3 2 3 1 4 4 6 4 3 4 2 5</td>
</tr>
<tr>
<td>9</td>
<td>353 23 1 4 242 12 0 4 464</td>
<td>16</td>
<td>3 5 3 2 3 1 4 2 4 2 1 2 0 3</td>
</tr>
<tr>
<td></td>
<td>34 2 5 363 231 4 464 34 2</td>
<td>17</td>
<td>5 6 4 3 4 2 5</td>
</tr>
<tr>
<td></td>
<td>2 5</td>
<td></td>
<td>3 6 3 2 3 1 4 4 6 4 3 4 2 5</td>
</tr>
</tbody>
</table>

62
3. Задача целочисленного программирования

3.1 Геометрическая интерпретация задачи целочисленного программирования

Экстремальная задача, переменные которой принимают лишь целочисленные значения, называется задачей целочисленного программирования.

В математической модели задачи целочисленного программирования, как целевая функция, так и функции в системе ограничений могут быть линейными, нелинейными и смешанными. Ограничиваясь случаем, когда целевая функция и система ограничений задачи являются линейными.

Задача:
\[F = 5 \cdot x_1 + 7 \cdot x_2 \rightarrow \min(1) \]
\[-3 \cdot x_1 + 14 \cdot x_2 \leq 78 \]
\[5 \cdot x_1 - 6 \cdot x_2 \leq 26(2) \]
\[x_1 + 4 \cdot x_2 \geq 25 \]
\[x_1, x_2 \geq 0 (3) \]
\[x_1, x_2 – \text{целые}(4) \]

Задание:
Найти минимальное значение линейной функции (1) при выполнении условий (2),(3),(4). Так как неизвестные могут принимать только целые значения, то задача (1) – (4) является задачей целочисленного программирования. Поскольку число неизвестных задачи равно двум, решение данной задачи можно найти, используя её геометрическую интерпретацию. Для этого, прежде
всего, построим многоугольник решений задачи, состоящей в определении минимального значения линейной функции \((1)\) при выполнении условий \((2), (3)\).

Заменяем неравенства равенствами, и строим прямые на координатной плоскости.

\[-3 \, x_1 + 14 \, x_2 = 78\]
\[5 \, x_1 - 6 \, x_2 = 26\]
\[x_1 + 4 \, x_2 = 25\]

Координаты всех точек полученного многоугольника удовлетворяют системе линейных неравенств.

Точка с координатами \((19/13, 153/26)\) является оптимальным планом задачи \((1) - (3)\), \(F_{min} = 48.5\).

Для того, чтобы найти целочисленное решение, в построенном ранее многоугольнике выделим в нем еще один, минимальный по площади многоугольник с целочисленными координатами вершин и содержащий все точки исходного многоугольника координаты которых удовлетворяют условию целочисленности переменных.

Точки \((x_1, x_2)\) многоугольника решений, координаты которых – целые числа:

\[(9,4), (10,4), (5,5), (6,5), (7,5), (8,5), (9,5), (10,5), (11,5), (2,6), (3,6), (4,6), (5,6), (6,6), (7,6), (8,6),
\[(9,6), (10,6), (11,6), (12,6), (7,7), (8,7), (9,7), (10,7), (11,7), (12,7), (13,7), (12,8), (13,8), (14,8),
\[(16,9)\].

Выделенный многоугольник имеет целочисленные координаты вершин:

\[(2,6), (5,5), (9,4), (10,4), (16,9), (12,8), (7,7)\].

Поиск точки минимума функции \((1)\) на выделенном многоугольнике с целочисленными координатами вершин приведет к оптимальному плану исходной целочисленной задачи.

Применя геометрический метод, построим перпендикулярно градиенту \((5;7)\), линию уровня, например:

\[5 \, x_1 + 7 \, x_2 = 35\] (число 35 выбрано произвольно).

Перемещение построенной линии уровня по направлению градиента до первой точки из выделенного многоугольника завершает поиск оптимального плана. Координаты \((x1;x2)\) найденной точки, а именно \((2;6)\) определяют этот оптимальный план и минимальное значение целевой функции \(F_{min} = 52\).

3.2 Общая постановка канонической задачи линейного целочисленного программирования

Рассмотрим задачи целочисленного программирования, в которых как целевая функция, так и функции в системе ограничений являются линейными. Сформулируем общую постановку канонической задачи линейного программирования, в которой переменные могут принимать только целые значения. В общем виде эту задачу можно записать так: найти максимум функции

\[F = \sum_{j=1}^{n} c_j x_j \] (5)

при условиях

\[\sum_{j=1}^{n} a_{ij} x_j = b_i \, (i = 1, \ldots, m)\] (6)
\[x_j \geq 0 \, (j = 1, \ldots, n)\] (7)
\[x_j \text{ цепелье } \, (j = 1, \ldots, n)\] (8)

Если найти решение задачи \((5) - (8)\) симплексным методом, то оно может оказаться как целочисленным, так и нет (примером задачи линейного программирования, решение которой всегда является целочисленным, служит транспортная задача). В общем случае для определения оптимального плана задачи \((5) - (8)\) требуется специальные методы. В настоящее время существует несколько таких методов, из которых наиболее известным является метод Гомори, в основе которого лежит симплексный метод.
3.3 Метод Гомори
Нахождение решения задачи целочисленного программирования методом Гомори начинают с определения симплексным методом оптимального плана задачи (5) – (7) без учёта целочисленности переменных. После того как этот план найден, просматривают его компоненты. Если среди компонент нет дробных чисел, то найденный план является оптимальным планом задачи целочисленного программирования (5) – (8). Если же в оптимальном плане задачи (5) – (7) переменная \(x_j \) принимает дробное значение, то к системе уравнений (6) добавляют неравенство

\[
\sum_j f(a^*_j) x_j \geq f(b^*_j) \quad (9)
\]

и находят решение задачи (5) – (9).

В неравенстве (9) \(a^*_j \) и \(b^*_j \) - преобразованные исходные данные величины \(a_j \) и \(b_i \), значения которых взяты из последней симплекс – таблицы, а \(f(a^*_j) \) и \(f(b^*_j) \) - дробные части чисел (под дробной частью некоторого числа \(a \) понимается наименьшее число \(b \) такое, что разность между \(a \) и \(b \) есть целое число). Если в оптимальном плане задачи (5) – (7) дробные значения принимают несколько переменных, то дополнительное неравенство определяется наилучшей дробной частью.

Задача:
\[
\begin{align*}
F= & 5 x_1 +7 x_2 \rightarrow \min \\
-3 x_1 + 14 x_2 \leq & 78 \\
5 x_1 -6 x_2 \leq & 26 \\
x_1 +4 x_2 \geq & 25 \\
x_1, x_2 \geq & 0 \\
x_1, x_2 \text{ – целые}
\end{align*}
\]

Решение:
Перейдем к равенствам:

\[
\begin{align*}
-3 x_1 + 14 x_2 + y_1 &= 78 \\
5 x_1 -6 x_2 + y_2 &= 26 \\
x_1 +4 x_2 - y_3 &= 25
\end{align*}
\]

Выразим базисные переменные:
\[
\begin{align*}
y_1 &= 78 - (-3 x_1 + 14 x_2) \\
y_2 &= 26 - (5 x_1 - 6 x_2) \\
y_3 &= -25 - (-x_1 - 4 x_2)
\end{align*}
\]

Заполним симплекс-таблицу, выберем в качестве генеральной – строку \(y_3 \), по которой не обеспечивается неотрицательность базисного решения.

Ликвидации такого нарушения – один из важнейших элементов метода Гомори, требующий систематического применения. Возможность ликвидации обеспечивается симплекс-преобразованием, в котором генеральный элемент отрицателен.

Возьмем в качестве генерального столбца –столбец \(x_2 \), тогда генеральным элементом является число «-4»:

<table>
<thead>
<tr>
<th>(C)</th>
<th>(x_1)</th>
<th>(x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>(y_1)</td>
<td>78</td>
<td>-3</td>
</tr>
<tr>
<td>(y_2)</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>(y_3)</td>
<td>-25</td>
<td>-1</td>
</tr>
</tbody>
</table>
После симплекс-пробразования, выполненного по стандартным правилам симплекс-метода, получим:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>x1</th>
<th>y3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>175</td>
<td>-13</td>
<td>-7</td>
</tr>
<tr>
<td>y1</td>
<td>-38</td>
<td>-26</td>
<td>14</td>
</tr>
<tr>
<td>y2</td>
<td>254</td>
<td>26</td>
<td>-6</td>
</tr>
<tr>
<td>x2</td>
<td>25</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Выберем в качестве генеральной строки и столбца, соответственно y1 и x1, по тем же соображениям, и, выполнив симплекс-преобразование, получим новое состояние таблицы. По элементам этой таблицы видно, что полученный план дробный (x1, x2, y1, y2, y3)= (19/13, 153/26, 0, 54, 0), с дробными частями x1, x2: 6/13, 23/26 из которых наибольшая соответствует переменной x2 и равна 23/26.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>y1</th>
<th>y3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1261</td>
<td>-1</td>
<td>-91</td>
</tr>
<tr>
<td>x1</td>
<td>19</td>
<td>-4</td>
<td>-14</td>
</tr>
<tr>
<td>y2</td>
<td>54</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>x2</td>
<td>153</td>
<td>1</td>
<td>-3</td>
</tr>
</tbody>
</table>

Добавим, отсекающее дробный план, новое ограничение:

\[
\frac{1}{26} y_1 + \frac{23}{26} y_3 \geq \frac{23}{26},
\]
в котором коэффициенты – дробные части элементов строки x2.

Перейдем к равенству

\[
\frac{1}{26} y_1 + \frac{23}{26} y_3 - z_1 = \frac{23}{26}
\]

и к новой пополненной строкой z1 таблице

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>y1</th>
<th>y3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1261</td>
<td>-1</td>
<td>-91</td>
</tr>
<tr>
<td>x1</td>
<td>19</td>
<td>-4</td>
<td>-14</td>
</tr>
<tr>
<td>y2</td>
<td>54</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>x2</td>
<td>153</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>z1</td>
<td>-23</td>
<td>1</td>
<td>-23</td>
</tr>
</tbody>
</table>
Перемещение \(z_1 \) и \(y_3 \) приведет к финальной таблице:

<table>
<thead>
<tr>
<th></th>
<th>(C)</th>
<th>(y_1)</th>
<th>(z_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>52</td>
<td>(-8)</td>
<td>(-91)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>2</td>
<td>(-3)</td>
<td>(-14)</td>
</tr>
<tr>
<td>(y_2)</td>
<td>52</td>
<td>(21)</td>
<td>(-52)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>6</td>
<td>(1)</td>
<td>(-3)</td>
</tr>
<tr>
<td>(y_3)</td>
<td>1</td>
<td>(1)</td>
<td>(-26)</td>
</tr>
</tbody>
</table>

Получен оптимальный план \(x_1=2, x_2=6 \), минимальное значение \(F=52 \).

Из изложенного следует, что процесс определения оптимального плана задачи целочисленного программирования методом Гомори включает следующие основные этапы:

1. Используя симплексный метод, находят решение задачи (5)-(7) без учёта требования целочисленности переменных.
2. Если был получен дробный план, то составляют отсекающее это дробный план ограничение для переменной, которая в оптимальном плане задачи (5)-(7) имеет максимальное дробное значение, а в оптимальном плане задачи (5) – (8) должна быть целочисленной.
3. Находят решение вспомогательной задачи, полученной включением в задачу (5)-(7) в качестве дополнительного – вышеуказанного отсекающего ограничения.
4. При необходимости составляют ещё одно дополнительное ограничение и продолжают итерационный процесс до получения оптимального плана задачи (5) – (8) или установления ее неразрешимости (невозможность ликвидации нарушений неотрицательности переменных или неограниченность целевой функции на множестве планов).

Рассмотрим задачу на нахождение максимума задачи целочисленного программирования:

Задача:
\[
F = 3x_1 + 2x_2 \rightarrow \text{max} \\
x_1 + x_2 + x_3 = 13 \\
x_1 - x_2 + x_4 = 6 \\
-3x_1 + x_2 + x_5 = 9 \\
x_1, \ldots, x_5 \geq 0 \\
x_1, \ldots, x_5 \text{ – целые}
\]

Решение:

Заполним симплекс-таблицу

<table>
<thead>
<tr>
<th></th>
<th>(C)</th>
<th>(x_1)</th>
<th>(x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>0</td>
<td>(-3)</td>
<td>(-2)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(x_4)</td>
<td>6</td>
<td>1</td>
<td>(-1)</td>
</tr>
<tr>
<td>(x_5)</td>
<td>9</td>
<td>(-3)</td>
<td>1</td>
</tr>
</tbody>
</table>

Переместим \(x_4, x_1 \)

<table>
<thead>
<tr>
<th></th>
<th>(C)</th>
<th>(x_4)</th>
<th>(x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>18</td>
<td>3</td>
<td>(-5)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>7</td>
<td>(-1)</td>
<td>2</td>
</tr>
<tr>
<td>(x_1)</td>
<td>6</td>
<td>1</td>
<td>(-1)</td>
</tr>
<tr>
<td>(x_5)</td>
<td>27</td>
<td>3</td>
<td>(-2)</td>
</tr>
</tbody>
</table>
Переместим x_3, x_2

\[
\begin{array}{c|ccc}
 & C & x_4 & x_3 \\
\hline
 F & 71 & 1 & 5 \\
 & 2 & 2 & \\
 x_2 & 7 & -1 & 1 \\
 & 2 & 2 & \\
 x_1 & 19 & 1 & 1 \\
 & 2 & 2 & \\
 x_5 & 34 & 2 & 1 \\
\end{array}
\]

Получен дробный план:

$\begin{cases}
 x_1, x_2, x_3, x_4, x_5 = (19/2, 7/2, 0, 0, 34)
\end{cases}$

В исходную задачу введём дополнительное ограничение:

$\frac{1}{2} x_4 + \frac{1}{2} x_3 \geq \frac{1}{2}$

Коэффициенты в этом неравенстве – дробные части элементов симплекс – таблицы строки x_1

Перейдем к равенству

$\frac{1}{2} x_4 + \frac{1}{2} x_3 + \frac{z_1}{2} = \frac{1}{2}$

Или

$x_4 + x_3 + z_1 = 1$

После включения этого ограничения в задачу получим симплекс-таблицу:

\[
\begin{array}{c|ccc}
 & C & x_4 & x_3 \\
\hline
 F & 71 & 1 & 5 \\
 & 2 & 2 & \\
 x_2 & 7 & -1 & 1 \\
 & 2 & 2 & \\
 x_1 & 19 & 1 & 1 \\
 & 2 & 2 & \\
 x_5 & 34 & 2 & 1 \\
 z_1 & -1 & -1 & -1 \\
\end{array}
\]

Перемещение z_1, x_4 ликвидирует нарушение неотрицательности переменных.

Новое состояние симплекс-таблицы имеет вид:

\[
\begin{array}{c|ccc}
 & C & z_1 & x_3 \\
\hline
 F & 35 & 1 & 2 \\
 x_2 & 4 & -1 & 1 \\
 x_1 & 9 & 1 & 0 \\
 x_5 & 32 & 2 & -1 \\
 x_4 & 1 & -1 & 1 \\
\end{array}
\]

Получен оптимальный план

$\begin{cases}
 x_1, x_2, x_3, x_4, x_5 = (9, 4, 0, 1, 32)
\end{cases}$
удовлетворяющий условиям целочисленности, при котором целевая функция принимает максимальное значение:

\[F_{\text{max}} = 35. \]

Упражнения
1. Решить целочисленную задачу графическим методом:
 \[F = 2x_1 + 2x_2 \rightarrow \text{min} \]

 \[
 \begin{align*}
 5x_1 + 2x_2 & \geq 10 \\
 2x_1 + 5x_2 & \geq 10 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]
 \(x_1, x_2\) – целые числа

2. Решить целочисленную задачу графическим методом:
 \[F = x_1 + 2x_2 \rightarrow \text{min} \]

 \[
 \begin{align*}
 3x_1 + 2x_2 & \leq 10 \\
 2x_1 + 5x_2 & \geq 10 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]
 \(x_1, x_2\) – целые числа

3. Решить целочисленную задачу графическим методом:
 \[F = 4x_1 + 3x_2 \rightarrow \text{min} \]

 \[
 \begin{align*}
 x_1 + 3x_2 & \leq 8 \\
 7x_1 + 3x_2 & \geq 20 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]
 \(x_1, x_2\) – целые числа

4. Решить целочисленную задачу графическим методом:
 \[F = -3x_1 - 2x_2 \rightarrow \text{min} \]

 \[
 \begin{align*}
 2x_1 + 3x_2 & \leq 8 \\
 3x_1 + 2x_2 & \geq 15 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]
 \(x_1, x_2\) – целые числа

5. Решить целочисленную задачу графическим методом:
 \[F = -x_1 - x_2 \rightarrow \text{min} \]

 \[
 \begin{align*}
 x_1 + 3x_2 & \leq 5 \\
 2x_1 + 2x_2 & \leq 9 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]
 \(x_1, x_2\) – целые числа

6. Решить целочисленную задачу графическим методом:
 \[F = 5x_1 + 2x_2 \rightarrow \text{min} \]

 \[
 \begin{align*}
 4x_1 + x_2 & \leq 10 \\
 x_1 + 5x_2 & \geq 10 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]
 \(x_1, x_2\) – целые числа

7. Решить целочисленную задачу графическим методом:
 \[F = 4x_1 + 3x_2 \rightarrow \text{min} \]

 \[
 \begin{align*}
 x_1 + 3x_2 & \leq 8 \\
 7x_1 + 3x_2 & \geq 20 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]
8. Решить целочисленную задачу графическим методом:
 \(F = -3x_1 - 2x_2 \rightarrow \text{min} \)

 \[
 \begin{align*}
 2x_1 + 3x_2 & \leq 8 \\
 3x_1 + 2x_2 & \geq 15 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]

9. Решить целочисленную задачу графическим методом:
 \(F = -x_1 - x_2 \rightarrow \text{min} \)

 \[
 \begin{align*}
 x_1 + 3x_2 & \leq 5 \\
 2x_1 + 2x_2 & \leq 9 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]

10. Решить целочисленную задачу графическим методом:
 \(F = x_1 + 2x_2 \rightarrow \text{min} \)

 \[
 \begin{align*}
 3x_1 + 2x_2 & \leq 10 \\
 2x_1 + 5x_2 & \geq 10 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]

11. Решить целочисленную задачу графическим методом:
 \(F = 4x_1 + 3x_2 \rightarrow \text{min} \)

 \[
 \begin{align*}
 x_1 + 3x_2 & \leq 8 \\
 7x_1 + 3x_2 & \geq 20 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]

12. Решить целочисленную задачу графическим методом:
 \(F = -4x_1 - 2x_2 \rightarrow \text{min} \)

 \[
 \begin{align*}
 4x_1 + 3x_2 & \leq 12 \\
 5x_1 + 2x_2 & \geq 16 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]

13. Решить целочисленную задачу графическим методом:
 \(F = -x_1 - 5x_2 \rightarrow \text{min} \)

 \[
 \begin{align*}
 3x_1 + x_2 & \leq 4 \\
 2x_1 + 3x_2 & \leq 8 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]

14. Решить целочисленную задачу графическим методом:
 \(F = -6x_1 - x_2 \rightarrow \text{min} \)

 \[
 \begin{align*}
 3x_1 + 5x_2 & \leq 12 \\
 x_1 + 7x_2 & \geq 16 \\
 x_1, x_2 & \geq 0
 \end{align*}
 \]

15. Решить целочисленную задачу графическим методом:
 \(F = x_1 + 4x_2 \rightarrow \text{min} \)
3 x₁ + 3 x₂ ≤ 9
5 x₁ + 7 x₂ ≥ 12
x₁, x₂ ≥ 0

x₁, x₂ – целые числа
16. Решить целочисленную задачу методом Гомори:
F= -2 x₁ - 3 x₂ → min

3 x₁ + 5 x₂ ≤ 12
4 x₁ + x₂ ≤ 19
x₁, x₂ ≥ 0

x₁, x₂ – целые числа
17. Решить целочисленную задачу методом Гомори:
F= -2 x₁ - x₂ → min

3 x₁ + x₂ ≤ 12
x₁ + x₂ ≤ 5
x₁, x₂ ≥ 0

x₁, x₂ – целые числа
18. Решить целочисленную задачу методом Гомори:
F= x₁ - 3 x₂ → min

3 x₁ + 4 x₂ ≤ 12
4 x₁ + 2 x₂ ≤ 10
x₁, x₂ ≥ 0

x₁, x₂ – целые числа
19. Решить целочисленную задачу методом Гомори:
F= 3 x₁ - x₂ → min

3 x₁ + x₂ ≤ 6
2 x₁ + 3 x₂ ≤ 9
x₁, x₂ ≥ 0

x₁, x₂ – целые числа
20. Решить целочисленную задачу методом Гомори:
F= 3 x₁ + x₂ → max

x₁ + 5 x₂ ≤ 8
2 x₁ + 3 x₂ ≤ 6
x₁, x₂ ≥ 0

x₁, x₂ – целые числа
21. Решить целочисленную задачу методом Гомори:
F= 2 x₁ - x₂ → min

5 x₁ + 4 x₂ ≤ 15
6 x₁ + 2 x₂ ≤ 10
x₁, x₂ ≥ 0

x₁, x₂ – целые числа
22. Решить целочисленную задачу методом Гомори:
F= x₁ - 4 x₂ → min

3 x₁ + 2 x₂ ≤ 3
x₁ + 3 x₂ ≤ 9
x₁, x₂ ≥ 0

x₁, x₂ – целые числа
23. Решить целочисленную задачу методом Гомори:
\[F = 2x_1 + 7x_2 \rightarrow \max \]
\[5x_1 + 3x_2 \leq 11 \]
\[2x_1 + x_2 \leq 9 \]
\[x_1, x_2 \geq 0 \]
\[x_1, x_2 \] – целые числа
24. Решить целочисленную задачу методом Гомори:
\[F = 2x_1 - 3x_2 \rightarrow \min \]
\[3x_1 + x_2 \leq 12 \]
\[4x_1 + x_2 \leq 10 \]
\[x_1, x_2 \geq 0 \]
\[x_1, x_2 \] – целые числа
25. Решить целочисленную задачу методом Гомори:
\[F = -3x_1 - 7x_2 \rightarrow \min \]
\[3x_1 + x_2 \leq 4 \]
\[5x_1 + 3x_2 \leq 8 \]
\[x_1, x_2 \geq 0 \]
\[x_1, x_2 \] – целые числа
26. Решить целочисленную задачу методом Гомори:
\[F = 2x_1 + 4x_2 \rightarrow \max \]
\[x_1 + 5x_2 \leq 8 \]
\[3x_1 + 3x_2 \leq 7 \]
\[x_1, x_2 \geq 0 \]
\[x_1, x_2 \] – целые числа
27. Решить целочисленную задачу методом Гомори:
\[F = 6x_1 - 5x_2 \rightarrow \min \]
\[x_1 + 4x_2 \leq 9 \]
\[2x_1 + x_2 \leq 10 \]
\[x_1, x_2 \geq 0 \]
\[x_1, x_2 \] – целые числа
28. Решить целочисленную задачу методом Гомори:
\[F = 5x_1 - 3x_2 \rightarrow \min \]
\[3x_1 + 5x_2 \leq 6 \]
\[x_1 + 3x_2 \leq 9 \]
\[x_1, x_2 \geq 0 \]
\[x_1, x_2 \] – целые числа
29. Решить целочисленную задачу методом Гомори:
\[F = x_1 + x_2 \rightarrow \max \]
\[3x_1 + x_2 \leq 7 \]
\[6x_1 + x_2 \leq 6 \]
\[x_1, x_2 \geq 0 \]
\[x_1, x_2 \] – целые числа
30. Решить целочисленную задачу методом Гомори:
\[F = 5x_1 - 3x_2 \rightarrow \min \]
\[6x_1 + 3x_2 \leq 13 \]
2 x₁ + 5 x₂ ≤ 10
x₁, x₂ ≥ 0
x₁, x₂ — целые числа

4. Задача динамического программирования.

4.1 Постановка задачи

Динамическое программирование — особый математический метод оптимизации решений, специально приспособленный к многошаговым (многоэтапным) операциям.
Подобные операции представляют собой процесс, развивающийся во времени и распдающихся на ряд «шагов» или «этапов». Этот процесс является управляемым, то есть на каждом шаге принимается какое-то решение, от которого зависит успех данного шага и операции в целом.
Рассмотрим пример естественно-многошаговой операции. Пусть планируется деятельность группы промышленных предприятий \(P_1, ..., P_c \) на некоторый период времени \(T \), состоящий из \(m \) хозяйственных лет.
В начале периода на развитие системы предприятий выделяются какие-то основные средства \(K_0 \), которые должны быть как-то распределены между предприятиями. В процессе функционирования системы выделенные средства частично расходуются. Кроме того, каждое предприятие за год приносит какой-то доход, зависящий от вложенных средств. В начале хозяйственного года имеющееся средства могут перераспределяться между предприятиями.
Ставится вопрос: как нужно в начале каждого года распределять имеющиеся средства между предприятиями, чтобы суммарный доход от всей системы предприятий за весь период \(T = N \) был максимальным?
Перед нами — типичная задача динамического программирования. Рассматриваемый управляемый процесс — функционирование системы предприятий. Управление процессом состоит в распределении средств. Шагом управления является выделение каких-то средств каждому из предприятий в начале хозяйственного года. Пусть в начале \(i \)-го хозяйственного года предприятиями \(P_1, ..., P_c \) выделяются средства \(x^{(1)}_i, x^{(2)}_i, ..., x^{(k)}_i \). Совокупность этих значений составляет управление на \(i \)-м шаге:
\[
U_i = (x^{(1)}_i, x^{(2)}_i, ..., x^{(k)}_i).
\]
Управление \(U \) операцией в целом представляет собой совокупность всех шаговых управлений
\[
U = (U_1, U_2, ..., U_N).
\]
Показатель эффективности управления (целевая функция \(W \)) представляет собой суммарный доход от всей системы предприятий за \(N \) лет. Он зависит от управления \(U \), то есть от всей совокупности шаговых управлений:
\[
W = W(U) = W(U_1, U_2, ..., U_N).
\]
Теперь поставленный выше вопрос о максимизации дохода может быть сформулирован иначе: как выбрать шаговые управления \(U_1, U_2, ..., U_N \) для того, чтобы величина \(W \) стала максимальной? Постановленная задача называется задачей оптимизации управления, а управление, при котором величина \(W \) достигает максимума — оптимальным управлением. Будем обозначать оптимальное управление (в отличие от управления \(U \) вообще) буквой \(u \). Оптимальное управление \(u \) многошагового процесса состоит из совокупности оптимальных шаговых управлений \(u = (u_1, u_2, ..., u_N) \).
Поставленную задачу можно решать по-разному: или искать сразу оптимальное управление, или строить его поэтапно, на каждом этапе расчёта оптимизируя один шаг, что и составляет суть метода динамического программирования.
Принцип динамического программирования отнюдь не предполагает, что каждый шаг оптимизируется независимо от других шагов. Процесс динамического программирования разворачивается от конца к началу. Раньше всех планируется последний \(N \)-й шаг. При этом необходимо сделать предположения о том, чем может закончиться \(N-1 \)-й шаг, и для каждого возможного исхода найти такое управление, при котором на \(N \)-м шаге будет получен
максимальный доход. Тем самым мы найдём условное оптимальное управление на N-м шаге. Теперь можно оптимизировать управление на N-1-м шаге. Сделаем все возможные предложения о том, чем может закончиться N-2-й шаг, и для каждого из этих предположений найдём такое управление на N-1-м шаге, чтобы выигрыш за последние два шага (из которых последний уже оптимизирован) был максимальным. Далее оптимизируем управление на N-2-м шаге и т.д.

Предположим, что условное управление на каждом шаге нам известно. Тогда мы можем найти не условное, а просто оптимальное управление на каждом шаге. Пусть нам известно некоторое начальное состояние процесса S. Выберем то условное управление первым шагом, которое при заданном начальном условии приведёт нас к максимальному выигрышу и переведёт в новое состояние S. Для этого состояния мы также знаем условное оптимальное управление u и т.д. Таким образом будет найдено оптимальное управление процессом u = (u1, u2, ..., uN), приводящее к максимальному выигрышу Wmax.

4.2 Функциональное уравнение Беллмана

Предположим, что данная физическая система S находится в некотором начальном состоянии S0 ∈ S и является управляемой. В результате осуществления некоторого управления u указанная система переходит из начального состояния S0 в конечное состояние Sконечное ∈ S. При этом качество каждого из реализуемых управлений U характеризуется соответствующим значением функции W(U). Задача состоит в том, чтобы из множества возможных управлений U найти такое U*, при котором функция W(U) принимает экстремальное (максимальное или минимальное) значение W(U*). Сформулированная задача и является общей задачей оптимального управления.

Процедура построения оптимального управления методом динамического программирования распределяется на две стадии: предварительную и окончательную. Предварительная оптимизация производится по шагам в обратном порядке – от последнего к первому. На этой стадии для каждого шага определяется условное оптимальное управление. На окончательной стадии оптимизация также проводится по шагам, но в естественном порядке, от первого к последнему.

В основе поэтапной процедуры лежит принцип оптимальности: каково бы ни было состояние S системы в результате какого-то числа шагов, мы должны выбирать управление на ближайшем шаге так, чтобы оно в совокупности с оптимальным управлением на всех последующих шагах приводило к максимальному выигрышу на всех оставшихся шагах, включая данный.

Введём некоторые обозначения.

W(S) – условный оптимальный выигрыш, получаемый на всех последующих шагах, начиная с i-го и до последнего. Он достигается при оптимальном управлении на всех шагах и равен максимальному выигрышу, который можно получить на всех этих шагах вместе, если в начале i-го шага система находится в состоянии S.

u(S) – условное оптимальное управление на i-м шаге.

U – какое-то управление, применяемое на шаг i.

w(S) – выигрыш, получаемый на шаге i в результате управления U при условии, что система находилась в некотором состоянии S.

i = 1, ..., N.

Так как построение оптимального управления ведётся от последнего шага к первому, начнём с нахождения функции W(S) - условного оптимального выигрыша на последнем шаге.

Используя введённые обозначения, получим формулу

\[W_N(S) = \max_{U_N} \{ W_N(S, U_N) \} \]

(1)

Максимум в формуле (1) берётся по всем допустимым на шаг N управлениам U_N, то есть по тем, которые приводят систему в заданную область конечных состояний S konечные.
Рассмотрим i-й шаг процесса управления. Пусть система находится в некотором состоянии S. Применяя на шаге i некоторое управление U_i, мы получим некоторый выигрыш $w_i = w(S, U_i)$ и переведём наше систему в некоторое новое состояние $S'=\phi_i(S, U_i)$ (функции w, ϕ должны быть известны). Кроме того, мы получим выигрыш и на всех последующих этапах. В соответствии с принципом оптимальности будем считать его максимальным. Выигрыш, получаемый на шагах, начиная с i-го (и до последнего) благодаря некоторому управлению U_i (необходимо оптимальному), выражается соотношением

$$W_i(S, U_i) = w_i(S, U_i) + W_{i+1}(S')$$

или

$$W_i(S, U_i) = w_i(S, U_i) + W_{i+1}(\phi_i(S, U_i)).$$

В соответствии с принципом оптимальности, мы должны выбрать такое управление U_i, при котором величина $W_i(S, U_i)$ максимальна и достигает значения

$$W_i(S) = \max_{U_i} \{ w_i(S, U_i) + W_{i+1}(\phi_i(S, U_i)) \}. \tag{2}$$

То управление U_i^0, при котором этот максимум достигается, и есть условное оптимальное управление на i-m шаге (для него будет использовано обозначение $u_i(s)$), а сама величина $W_i(S)$ – условный оптимальный выигрыш.

Рекуррентное соотношение (1), (2) представляет собой математическую запись принципа оптимальности и носит название уравнение Беллмана. Используя эти формулы, мы можем построить всю цепочку оптимальных управлений. Действительно, определив с помощью уравнения (1) $W_N(S)$, положим в уравнении (2) $i + 1 = N$ и найдём $W_{N-1}(S)$ и $u_{N-1}(S)$, затем $W_{N-2}(S)$ и $u_{N-2}(S)$ и так далее, вплоть до нахождения $W_1(S)$ и $u_1(S)$. На этом закончится первая стадия – стадия предварительной оптимизации.

Перейдём ко второй стадии – нахождения безусловного оптимального управления

$$u = (u_1, \cdots, u_m).$$

Начнём с первого шага. Предположим, что исходное состояние S_0 нам известно. Подставим это состояние в формулу для условного оптимального выигрыша $W_i(S)$. Получим

$$W_{max} = W_i(S_0).$$

Одновременно найдём оптимальное управление на первом шаге

$$u_1 = u_1(S_0).$$

Далее, зная исходное состояние S_0 и управление u_1, можем найти состояние S_1 системы после первого шага и оптимальное управление на втором шаге:

$$S_1 = \phi(S_0, u_1),$$

$$u_2 = u_2(S_1).$$

И так далее, идя по цепочке

$$S_0 \to u_1(S_0) \to S_1 \to u_2(S_1) \to S_2 \to u_3(S_2) \to \cdots \to u_N(S_{N-1}) \to S_N,$$

мы определим, одна за другим, все шаговые оптимальные управления и найдём состоящее из них оптимальное управление операций в целом

$$u = (u_1, \cdots, u_N).$$

Если исходное состояние системы известно нам не полностью, а только ограничено условием $S_0 \in \bar{S}_0$, то нужно найти такое оптимальное начальное состояние S_0, при котором условный оптимальный выигрыш максимален:

$$W_{max} = \max_{S \in S_0} \{ W_i(S) \}.$$

То начальное состояние S_0^*, для которого этот максимум достигается, и должно быть выбрано в качестве исходного. В заключение отметим, что процесс динамического программирования может разворачиваться и в обратном рассмотренному нами направлении: условные оптимальные управления могут
находиться в направлении от первого шага к последнему, а безусловные – от последнего к первому.

4.3 Решение экономических задач методом динамического программирования

4.3.1 Оптимальная стратегия замены оборудования

Для повышения эффективности своей деятельности экономические предприятия должны периодически проводить замену используемого ими оборудования. При этой замене учитываются производительность используемого оборудования (то есть объём выпуска на нём продукции в течение единицы времени), затраты, связанные с содержанием и ремонтом оборудования, стоимость приобретаемого и заменяемого оборудования.

Наложение оптимальной стратегии замены оборудования состоит в определении оптимальных сроков замены. Критерием оптимальности при этом может служить прибыль от эксплуатации оборудования.

Эту задачу можно рассматривать как задачу динамического программирования, в которой в качестве системы S выступает оборудование. Состояние этой системы определяется фактическим временем использования оборудования t, то есть описывается одним параметром. В качестве управлений выступают решения о замене или о сохранении оборудования, которые принимаются ежегодно.

Обозначим через U_1 решение о сохранении оборудования, а через U_2 – решение о замене оборудования. Введём также следующие обозначения:

- N – длительность планируемого хозяйственного периода;
- $R(t)$ – стоимость продукции, производимой на оборудовании возрастом t лет;
- $Z(t)$ – ежегодные затраты на обслуживание оборудования возрастом t лет;
- $S(t)$ – остаточная стоимость оборудования возрастом t лет;
- P – покупная цена оборудования.

Тогда, используя введённые в предыдущем разделе обозначения, составим уравнение Беллмана:

$$\bar{W}(t, U_1) = \max_{i} \left(R(t) - Z(t) + W_{i+1}(t+1) \right)$$

- доход, получаемый за последние i лет планового периода при условии, что к этому моменту возраст оборудования составляет t лет и принимается решение о сохранении оборудования.

$$\bar{W}(t, U_2) = R(0) - Z(0) + S(t) - P + W_{i+1}(1)$$

- доход, получаемый в этой ситуации при вырабатывании решения о замене оборудования.

Таким образом,

$$W_i(t) = \max \left\{ \begin{array}{l}
R(t) - Z(t) + W_{i+1}(t+1); \\
R(0) - Z(0) + S(t) + W_{i+1}(1) - P
\end{array} \right\}$$

и

$$W_N(t) = \max \left\{ \begin{array}{l}
R(t) - Z(t) \\
S(t) - P + R(0) - Z(0)
\end{array} \right\}$$

Решим следующую задачу.

К началу рассматриваемого периода на предприятии установлено новое оборудование.

Зависимость производительности этого оборудования от его возраста, а также затраты на содержание и ремонт при различном времени его использования приведены в таблице.

Таблица 1.
Известно, что затраты, связанные с приобретением и установкой нового оборудования составляют $P = 40$ млн.руб., а заменяемое оборудование списывается: $S(t) = 0$. Составить такой план замены оборудования в течение пяти лет, при котором общий доход за данный период времени максимален.

Используя составленные уравнения, приступаем к решению задачи. Решение начинаем с определения условного оптимального управления для последнего, пятого года рассматривающего хозяйственного периода. К началу пятого года возраст оборудования может составлять 4 года (если оборудование не заменялось ни разу), 3 года (если его заменили после 1 года эксплуатации), 2 или 1 год. Следовательно, параметр t может принимать значения 1, 2, 3, 4. Для каждого из этих значений параметра t найдём значение функции $W_5(t)$, используя приведённые в таблице 1 данные.

(1) $t = 1$ (оборудование имеет возраст год). Если принимать решение о замене оборудования (использовать управление U_2), то доход составит

$$
\tilde{W}_5(1, U_2) = S(1) - P + R(0) - Z(0) = 0 - 40 + 80 - 20 = 20.
$$

Если принимать решение о продолжении использования оборудования, то доход составит величину

$$
\tilde{W}_5(1, U_1) = R(t) - Z(t) = 75 - 25 = 50.
$$

Таким образом,

$$
W_5(1) = \max\{\tilde{W}_5(1, U_2); \tilde{W}_5(1, U_1)\} = \max\{20;50\} = 50.
$$

То есть целесообразно принять решение о сохранении оборудования: $u_5(1) = U_1$.

(2) $t = 2$ (оборудование к началу 5-го года имеет возраст 2 года).

$$
\tilde{W}_5(2, U_1) = 65 - 30 = 35,
$$

$$
\tilde{W}_5(2, U_2) = 0 - 40 + 80 - 20 = 20,
$$

$$
W_5(2) = \max\{\tilde{W}_5(2, U_2); \tilde{W}_5(2, U_1)\} = \max\{20;35\} = 35.
$$

Целесообразно принять решение о сохранении оборудования; условное оптимальное управление: $u_5(2) = U_1$.

(3) $t = 3$.

$$
\tilde{W}_5(3, U_1) = 60 - 35 = 25,
$$

$$
\tilde{W}_5(3, U_2) = 0 - 40 + 80 - 20 = 20,
$$

$$
W_5(3) = \max\{\tilde{W}_5(3, U_2); \tilde{W}_5(3, U_1)\} = \max\{20;25\} = 25.
$$

$u_5(3) = U_1$.

(4) $t = 4$.

$$
\tilde{W}_5(4, U_1) = 60 - 45 = 15,
$$

$$
\tilde{W}_5(4, U_2) = 0 - 40 + 80 - 20 = 20,
$$

$$
W_5(4) = \max\{\tilde{W}_5(4, U_2); \tilde{W}_5(4, U_1)\} = \max\{20;15\} = 205.
$$

$u_5(4) = U_2$.

В этой ситуации выгоднее заменить оборудование.
Внесём результаты в таблицу.

Таблица 2.

<table>
<thead>
<tr>
<th>Возраст оборудования, лет (значение параметра t)</th>
<th>Доход, млн.руб (значение функции $W_5(t)$)</th>
<th>Условное оптимальное управление $u_4(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>U_1</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>U_1</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>U_1</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>U_2</td>
</tr>
</tbody>
</table>

Рассмотрим теперь всевозможные состояния оборудования на четвёртом году планируемого пятилетнего периода. К началу этого года возраст оборудования может составлять 1, 2 или 3 года.

Формулы, применяемые в этом случае, имея вид:

$$
\tilde{W}_4(t, U_1) = R(t) - Z(t) + W_5(t + 1), \\
\tilde{W}_4(t, U_2) = R(0) - Z(0) - P + W_5(1), \\
W_4(t) = \max\{\tilde{W}_4(t, U_1); \tilde{W}_4(t, U_2)\}.
$$

Проведём вычисления, используя данные таблиц 1, 2.

(1) $t = 1$ (оборудование имеет возраст год).

$$
\tilde{W}_4(1, U_1) = R(1) - Z(1) + W_5(2) = 75 - 25 + 35 = 85, \\
\tilde{W}_4(1, U_2) = 80 - 20 - 40 + 50 = 70, \\
W_4(t) = \max\{85; 70\} = 85.
$$

Таким образом, $u_4(1) = U_1$.

(2) $t = 2$.

$$
\tilde{W}_4(2, U_1) = R(2) - Z(2) + W_5(3) = 65 - 30 + 25 = 60, \\
\tilde{W}_4(2, U_2) = R(0) - Z(0) - P + W_5(1) = 80 - 20 - 40 + 50 = 70, \\
W_4(2) = \max\{\tilde{W}_4(2, U_1); \tilde{W}_4(2, U_2)\} = \max\{60; 70\} = 70, \\
u_4(2) = U_2.
$$

(3) $t = 3$.

$$
\tilde{W}_4(3, U_1) = R(3) - Z(3) + W_5(4) = 60 - 35 + 20 = 45, \\
\tilde{W}_4(3, U_2) = R(0) - Z(0) - P + W_5(1) = 80 - 20 - 40 + 50 = 70, \\
W_4(3) = \max\{\tilde{W}_4(3, U_1); \tilde{W}_4(3, U_2)\} = \max\{45; 70\} = 70, \\
u_4(3) = U_2.
$$

Внесём полученные результаты в таблицу.

Таблица 3.

<table>
<thead>
<tr>
<th>Возраст оборудования, лет (значение параметра t)</th>
<th>Доход, млн.руб (значение функции $W_4(t)$)</th>
<th>Условное оптимальное управление $u_4(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
<td>U_1</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>U_2</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>U_2</td>
</tr>
</tbody>
</table>

Определим теперь условно оптимальные решения для третьего года планируемого периода.

Возможные значения параметра t в этом случае 1; 2.

Формулы, применяемые в этом случае, имея вид:

$$
\tilde{W}_4(t, U_1) = R(t) - Z(t) + W_4(t + 1),
$$
\[\tilde{W}_s(t, U_2) = R(0) - Z(0) - P + W_2(1). \]

Используя данные таблиц 1, 3, проведём вычисления.
\[W_2(1) = \max \{ \tilde{W}_3(1, U_1); \tilde{W}_3(1, U_2) \} = \]
\[= \max \{ R(1) - Z(1) + W_2(2); R(0) - Z(0) - P + W_2(1) \} = \]
\[= \max \{ 75 - 25 + 70; 80 - 20 - 40 + 85 \} = \max \{ 120; 105 \} = 120; \]
\[u_3(1) = U_1. \]
\[W_3(2) = \max \{ \tilde{W}_4(2, U_1); \tilde{W}_4(2, U_2) \} = \]
\[= \max \{ R(2) - Z(2) + W_3(3); R(0) - Z(0) - P + W_3(1) \} = \]
\[= \max \{ 65 - 30 + 70; 80 - 20 - 40 + 85 \} = \max \{ 105; 105 \} = 105; \]
\[u_3(2) = U_1 \text{ или } u_3(2) = U_2, \]
то есть оба варианта (как решение о замене оборудования, так и решение о сохранении оборудования) приносят одинаковую прибыль.
Вносим результаты в таблицу.

<table>
<thead>
<tr>
<th>Возраст оборудования, лет (значение параметра t)</th>
<th>Доход, млн. руб (значение функции W_s(t))</th>
<th>Условное оптимальное управление u_s(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>U_1</td>
</tr>
<tr>
<td>2</td>
<td>105</td>
<td>U_1 или U_2</td>
</tr>
</tbody>
</table>

Рассмотрим 2-й год планируемого периода.
Возможным значением параметра t является только t = 1 (так как известно, что в начале всего пятилетнего периода было установлено новое оборудование).
\[\tilde{W}_2(1, U_1) = R(1) - Z(1) + W_2(2) = 75 - 25 + 105 = 155; \]
\[\tilde{W}_2(1, U_2) = R(0) - Z(0) - P + W_2(1) = 80 - 20 - 40 + 120 = 140; \]
\[W_2(1) = \max \{ \tilde{W}_2(1, U_1); \tilde{W}_2(1, U_2) \} = \max \{ 155; 140 \} = 155. \]
Таким образом, \(u_2(1) = U_1. \)
По условию на первом году пятилетнего периода установлено новое оборудование.
Следовательно, в этом году нет необходимости принимать управляющее решение — оно уже принято. Поэтому
\[W_1(0) = R(0) - Z(0) + W_2(1) = 80 - 20 + 155 = 215. \]
Что и составляет максимальный доход, который может получить предприятие, используя оптимальную стратегию замены оборудования в пределах рассматриваемого пятилетнего периода.
Теперь проследим за нашим процессом в обратном направлении.
1-й год. Установлено новое оборудование. Тем самым принято управление \(u_1, \) что однозначно определяет состояние системы к началу следующего года.
2-й год. К началу этого года возраст оборудования составляет 1 год. Оценки показали, что целесообразно сохранить оборудование (управление \(u_1). \)
3-й год. Так как на втором году оборудование было сохранено, то к началу третьего года возраст оборудования составляет 2 года. Таблица 4 показывает, что в этом случае можно принять как управление 1, так и управление 2.
4-й год. Если в начале 3-го года принято управление \(u_1, \) то возраст оборудования составит 3 года, и в соответствии с таблицей 3 необходимо принять решение о замене оборудования (\(u_2). \)
Если в начале 3-го года принято управление \(u_2, \) то возраст оборудования в начале 4-го этапа — 1 год, и принимается решение \(u_1 \) о сохранении оборудования.
5-й год. В начале 4-го этапа могли приниматься различные решения. В одном случае возраст оборудования к началу 5-го этапа составит 1 год, в другом — 2 года. Таблица 2 показывает, что и в том, и в другом случае целесообразно принять решение о сохранении оборудования (управление у). Схема, представленная ниже, отражает процесс принятия решений.

года 1-й 2-й 3-й 4-й 5-й
управления у1 → у1 → у1 → у2 → у1
доходы 80-20=60 → 75−25=50 → 65−30=35 → 80−20−40=20 → 75−25=50
80−20−40=20 → 75−25=50 → 65−30=35

4.3.2 Оптимальное распределение ресурсов

На практике часто встречаются многоэтапные операции, связанные с распределением тех или иных ресурсов. Речь может идти о распределении денежных средств, сырья, рабочей силы по предприятиям, отраслям промышленности или этапам отдельных работ. Примером может служить следующая задача.

Для увеличения объёма выпуска продукции, изготавляемой N предприятиями, выделены капиталовложения в объёме S рублей. Использование i-м предприятием S_i рублей из указанных средств обеспечивает прирост выпуска продукции, определяемый значением функции f_i(S_i), вообще говоря, нелинейной. Требуется найти распределение капиталовложений между предприятиями, обеспечивающее максимальное увеличение выпуска продукции. Сформулированной задаче соответствует следующая математическая задача.

Найти наибольшее значение функции

\[F = \sum_{i=1}^{N} f_i(S_i) \]

при условиях

\[\sum_{i=1}^{N} S_i = S; \quad S \geq 0; \quad i = 1, \ldots, N. \]

Эту задачу можно рассматривать как многошаговую. Будем исследовать эффективность вложения средств сначала в одно предприятие, потом в два и т.д. и, наконец, в N предприятий. Таким образом, получаем N этапов исследования системы.

В данном случае система есть группа предприятий.

X - состояние системы — объём средств, выделяемых на развитие группы предприятий.

U_i - управление на i-м шаге — определяется параметром X_i - объёмом средств, выделяемых на развитие i-го предприятия.

W(X) - условный оптимальный выигрыш, получаемый на i-м шаге нашей задачи.

Функциональные уравнения для нашей задачи удобно составить следующим образом:

\[W_i(X) = f_i(X), \]

\[\{f_i(X_i) + W_{i-1}(X - X_i)\}, \]

\[W(X) = \max \{f_i(X_i) + W_{i-1}(X - X_i)\}. \]

Рассмотрим полное решение следующей конкретной задачи.

Пусть S = 700 млн.руб., N = 3, а значения S_i и f_i(S_i) представлены в Таблице 1.
Таблица 1.

<table>
<thead>
<tr>
<th>Объём капиталовложений S_i, млн.руб.</th>
<th>Прирост выпуска продукции $f_i(S_i)$ в зависимости от объёма капиталовложений</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Предприятие 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>300</td>
<td>90</td>
</tr>
<tr>
<td>400</td>
<td>110</td>
</tr>
<tr>
<td>500</td>
<td>170</td>
</tr>
<tr>
<td>600</td>
<td>180</td>
</tr>
<tr>
<td>700</td>
<td>210</td>
</tr>
</tbody>
</table>

Предполагается, что средства могут вкладываться с шагом 100 млн. рублей.

1-й этап решения.

Рассматривается только одно – первое предприятие. Возможные состояния системы X, то есть возможные объёмы средств, выделяемых первому предприятию, - значения 0, 100, ..., 700. Так как условный оптимальный выигрыш на этом этапе $W_i(X) = f_i(X)$, то выделим соответствующие данные в новую таблицу 2.

Таблица 2.

<table>
<thead>
<tr>
<th>Состояние X</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_i(X)$</td>
<td>0</td>
<td>30</td>
<td>50</td>
<td>90</td>
<td>110</td>
<td>170</td>
<td>180</td>
<td>210</td>
</tr>
</tbody>
</table>

2-й этап решения.

Рассмотрим группу из двух предприятий. Возможные состояния X - опять 0, 100, ..., 700.

Уравнение имеет вид

$$ W_2(X) = \max_{0 \leq X_1 \leq X} \{ f_2(X_2) + W_i(X - X_2) \} $$

Значения $f_2(X_2)$ определяем по таблице 1. Значения $W_i(X - X_2)$ - по таблице 2.

Рассмотрим каждое из состояний.

1. $X = 0$.

Управления очевидны: второму предприятию выделяется $X_2 = 0$ млн.руб, первому $X - X_2 = 0$ млн.руб. $W_2(0) = 0$.

2. $X = 100$.

Возможны управления:

- второму предприятию выделить $X_2 = 0$ млн. руб., первому $X - X_2 = 100 - 0 = 100$ млн. руб.
- или второму предприятию выделить $X_2 = 100$ млн. руб., первому $X - X_2 = 100 - 100 = 0$ млн. руб.

Все вычисления проведём в таблице 3.

Таблица 3.

<table>
<thead>
<tr>
<th>X_2</th>
<th>100 - X_2</th>
<th>$f_2(X_2)$</th>
<th>$W_1(X - X_2)$</th>
<th>${ f_2(X_2) + W_i(100 - X_2) }$</th>
<th>$W_2(100)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>* 50</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>50</td>
<td>* 50</td>
</tr>
</tbody>
</table>

Звёздочкой (*) отмечено условно-оптимальное управление $U_i(X)$.

3. $X = 200$. Возможные управления и соответствующие расчёты поместим в таблицу.

81
Возможные управления и соответствующие расчёты поместим в таблицу.

Таблица 4.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(200 - X)</th>
<th>(f_2(X))</th>
<th>(W_i(200 - X))</th>
<th>({f_2(X) + W_i(200 - X)})</th>
<th>(W_2(200) = \max_{0 \leq X \leq 200} {f_2(X) + W_i(200 - X)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>* 80</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>30</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

4. \(X = 300 \). Возможные управления и соответствующие расчёты поместим в таблицу.

Таблица 5.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(300 - X)</th>
<th>(f_2(X))</th>
<th>(W_i(300 - X))</th>
<th>({f_2(X) + W_i(300 - X)})</th>
<th>(W_2(300) = \max_{0 \leq X \leq 300} {f_2(X) + W_i(300 - X)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>300</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>* 110</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>80</td>
<td>30</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

5. \(X = 400 \). Возможные управления и соответствующие расчёты поместим в таблицу.

Таблица 6.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(400 - X)</th>
<th>(f_2(X))</th>
<th>(W_i(400 - X))</th>
<th>({f_2(X) + W_i(400 - X)})</th>
<th>(W_2(400) = \max_{0 \leq X \leq 400} {f_2(X) + W_i(400 - X)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400</td>
<td>0</td>
<td>110</td>
<td>110</td>
<td>* 150</td>
</tr>
<tr>
<td>100</td>
<td>300</td>
<td>50</td>
<td>90</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>80</td>
<td>50</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>90</td>
<td>30</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

6. \(X = 500 \).

Таблица 7.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(500 - X)</th>
<th>(f_2(X))</th>
<th>(W_i(500 - X))</th>
<th>({f_2(X) + W_i(500 - X)})</th>
<th>(W_2(500))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
<td>0</td>
<td>170</td>
<td>170</td>
<td>* 190</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>50</td>
<td>110</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>300</td>
<td>80</td>
<td>90</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>200</td>
<td>90</td>
<td>50</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>100</td>
<td>150</td>
<td>30</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>190</td>
<td>0</td>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>

7. \(X = 600 \).

Таблица 8.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(600 - X)</th>
<th>(f_2(X))</th>
<th>(W_i(600 - X))</th>
<th>({f_2(X) + W_i(600 - X)})</th>
<th>(W_2(600))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>600</td>
<td>0</td>
<td>180</td>
<td>180</td>
<td>* 220</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
<td>50</td>
<td>170</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>400</td>
<td>80</td>
<td>110</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>90</td>
<td>90</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>200</td>
<td>150</td>
<td>50</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>190</td>
<td>30</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>0</td>
<td>210</td>
<td>0</td>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>

8. \(X = 700 \).
<table>
<thead>
<tr>
<th>X_2</th>
<th>$700 - X_2$</th>
<th>$f_2(X_2)$</th>
<th>$W_i(700 - X)$</th>
<th>${f_2(X_2) + W_i(700 - X_2)}$</th>
<th>$W_2(700)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>700</td>
<td>0</td>
<td>210</td>
<td>210</td>
<td>* 250</td>
</tr>
<tr>
<td>100</td>
<td>600</td>
<td>50</td>
<td>180</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>80</td>
<td>170</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>400</td>
<td>90</td>
<td>110</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>300</td>
<td>150</td>
<td>90</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>200</td>
<td>190</td>
<td>50</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>100</td>
<td>210</td>
<td>30</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>0</td>
<td>220</td>
<td>220</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Итогом второго является следующая таблица.

<table>
<thead>
<tr>
<th>Состояние X</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_2(X)$</td>
<td>0</td>
<td>50</td>
<td>80</td>
<td>110</td>
<td>150</td>
<td>190</td>
<td>220</td>
<td>250</td>
</tr>
<tr>
<td>Условно оптимальное управление $U_2(X) = X_2$</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>или 200</td>
<td>200</td>
<td>400</td>
<td>500</td>
<td>или 100</td>
</tr>
</tbody>
</table>

3-й этап решения.
На этом этапе рассматриваем группу из всех трёх предприятий. Единственно возможным состоянием системы является значение $X = 700$ (выделенные деньги должны быть использованы).

$$W_3(X) = \max_{0 \leq X_3 \leq X} \{f_3(X_3) + W_2(X - X_3)\},$$

где $X = 700$.

Как и на втором, соберём вычисления в таблицу информацию, для которой получим из таблиц (1) $\{f_3(X_3)\}$ и таблицы 9 $W_2(X - X_3)$.

<table>
<thead>
<tr>
<th>X_3</th>
<th>$700 - X_3$</th>
<th>$f_3(X_3)$</th>
<th>$W_2(700 - X_3)$</th>
<th>${f_3(X_3) + W_2(700 - X_3)}$</th>
<th>$W_3(700)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>700</td>
<td>0</td>
<td>250</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>600</td>
<td>40</td>
<td>220</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>500</td>
<td>50</td>
<td>190</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>400</td>
<td>110</td>
<td>150</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>300</td>
<td>120</td>
<td>110</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>200</td>
<td>180</td>
<td>80</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>100</td>
<td>220</td>
<td>50</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>0</td>
<td>240</td>
<td>0</td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

Как видно из таблицы, условный оптимальный выигрыш на третьем этапе – 270 млн.руб. – получается при управлении $X_3 = 600$ и, соответственно, $X - X_3 = 100$.

Таким образом, целесообразно выделить 3-му предприятию 600 млн.руб., 2-му – 100 млн.руб.
При этом будет достигаться наибольшее обеспечение выпуска продукции, приносящее прибыль 270 млн.руб.
5. Применение теории графов к решению задач

Очень полезным при решении ряда экономических задач оказывается язык теории графов. Не приводя формального определения графа, напомним, что граф может пониматься как сеть линий (ребер, дуг), соединяющих заданные точки (вершины). Вершинам графа могут соответствовать некоторые географические пункты; ориентированные ребра, идущее из одной вершины в другую, указывает на возможность перемещения из одного пункта в другой в указанном направлении. Каждому ребру (дуге) может быть приписано некоторое неотрицательное число, называемое ценой ребра (дуги). В частных случаях цена ребра может соответствовать расстоянию между пунктами, временем или стоимостью перемещения. Удобно информацию о числах, приписанных дугам, задавать матрицей

\[
C = \begin{pmatrix}
 c_{11} & c_{12} & \cdots & c_{1n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \cdots & c_{nn}
\end{pmatrix}.
\]

Порядок этой матрицы равен числу вершин в графе. Элемент \(c_{ij} \) равен цене дуги, идущей из вершины \(i \) в вершину \(j \). Если дуга в графе отсутствует, то соответствующий элемент матрицы обозначается символом \(\infty \). Граф, каждому ребру которого приписано некоторое число, называют оцененным.

5.1 Задача поиска кратчайшего пути.

Задача о кратчайшем пути на графе в общем виде может быть сформулирована следующим образом.

Задан ориентированный граф оцененный граф. В графе выделены две вершины \(A \) и \(B \). Требуется найти такой путь между вершинами \(A \) и \(B \), который имеет наименьшую цену (цена пути – сумма цен дуг, составляющих этот путь).

Для решения этой задачи бывает полезно разбить вершины графа на уровни. К нулевому уровню относится вершины графа, в которые не входит ни одна дуга. Удалим теперь из графа все вершины нулевого уровня и исходящие из них дуги. Нулевой уровень полученного графа – это первый уровень исходного графа. Аналогично определяются второй и последующие уровни до \(n \)-го включительно. Будем рассматривать задачи, в которых \(n \)-й уровень содержит лишь одну конечную вершину \(B \), а нулевой уровень – одну вершину \(A \).

После разбиения вершин графа на уровни, легко применить для нахождения решения задачи метод динамического программирования. На каждом шаге будем рассматривать вершины определённого уровня.

Состояние системы на каждом этапе описывается множеством вершин соответствующего уровня. Для удобства запоминаям вершины: вершина \(A \) получает номер 0, вершина \(B \) получает номер \(N \). Управление на каждом этапе – выбор определённой дуги.

Пусть:

- \(c_{ij} \) – цена дуги, соединяющей пункты \(i \) и \(j \);
- \(W_i(S) \) – минимальная цена пути от вершины \(S \), принадлежащей уровню \(i \) до конечной вершины \(n \)-го уровня;
- \(u_i(S) \) – номер пункта, в который можно двигаться из пункта \(S \), чтобы получить величину \(W_i(S) \) – условное оптимальное управление на шаге \(i \).

Функциональные уравнения для нашей задачи имеют следующий вид:

\[
W_i(S) = \min_j \left\{ c_{sj} + W_{i+1}(j) \right\};
\]

\[
W_{n-1}(S) = c_{SN}.
\]

Приведём полное решение следующей задачи.

Колонна автомашин должна доставить груз из пункта \(A \) в пункт \(B \). Дорожная сеть представлена на рис.1.
Рис.1.
Возле каждой дуги проставлена длина соответствующего отрезка маршрута.
Требуется найти маршрут движения автocolонны минимальной длины.
Прежде всего, разобьём вершины на уровни.
Нулевой уровень: вершина A;
первый уровень: вершины 1, 2, 3;
второй уровень: вершины 4, 5, 6;
третий уровень: вершины 7, 8, 9;
Тем самым получаем следующие этапы.
1-й этап.
Рассматриваются вершины 3-го уровня. Именно из этих вершин можно попасть в вершину по пути, содержащему ровно одно ребро.
Внесём информацию в таблицу.

<table>
<thead>
<tr>
<th>S</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_3(S)</td>
<td>15</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>u_3(S)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

2-й этап.
Рассмотрим вершины 2-го уровня и для каждой по формуле
\[W_2(S) = \min_{j} \{c_{Sj} + W_3(j)\} \]
найдём условный оптимальный выигрыш.
(1) \(S = 4, W_2(4) = \min\{C_{4,7} + W_3(7); C_{4,8} + W_3(8)\} = \min\{10 + 15; 6 + 4\} = 10 \).
Условное оптимальное управление в этом случае \(u_2(4) = 8 \).
(2) \(S = 5, W_2(5) = \min\{C_{5,7} + W_3(7); C_{5,9} + W_3(9)\} = \min\{12 + 15; 16 + 3\} = 19 \).
Условное оптимальное управление в этом случае \(u_2(5) = 9 \).
(3) \(S = 6, W_2(6) = \min\{C_{6,8} + W_3(8); C_{6,9} + W_3(9)\} = \min\{13 + 4; 10 + 3\} = 13 \).
Условное оптимальное управление в этом случае \(u_2(6) = 9 \).
Внесём информацию в таблицу.

<table>
<thead>
<tr>
<th>S</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_2(S)</td>
<td>10</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>u_2(S)</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
3-й этап.
Рассматриваются вершины первого уровня.

\[W_i(S) = \min \left\{ C_{Sj} + W_2(j) \right\} \]

(1) \(S = 1, \ W_i(1) = \min \{ C_{1,4} + W_2(4); C_{1,5} + W_2(5) \} = \min \{ 9 + 10; 7 + 19 \} = 19 \).

Условное оптимальное управление в этом случае \(u_i(1) = 5 \).

(2) \(S = 2, \ W_i(2) = \min \{ C_{2,4} + W_2(4); C_{2,6} + W_2(6) \} = \min \{ 8 + 10; 10 + 13 \} = 18 \).

Условное оптимальное управление в этом случае \(u_i(2) = 4 \).

(3) \(S = 3, \ W_i(3) = \min \{ C_{3,5} + W_2(5); C_{3,6} + W_2(6) \} = \min \{ 9 + 19; 11 + 13 \} = 24 \).

Условное оптимальное управление в этом случае \(u_i(3) = 6 \).

<table>
<thead>
<tr>
<th>(S)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_i(S))</td>
<td>19</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>(u_i(S))</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

4-й этап.

\[W_0(0) = \min \{ C_{0,1} + W_1(1); C_{0,2} + W_1(2); C_{0,3} + W_1(3) \} = \min \{ 8 + 19; 5 + 18; 4 + 24 \} = 23 \].

\(u_0(0) = 2 \).

Найдём безусловное оптимальное управление

\(0 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 10 \). \hspace{1cm} 5 + 8 + 6 + 4 = 23.

5.2 Метод ветвей и границ

Метод ветвей и границ – общий алгоритмический метод для нахождения оптимальных решений различных задач оптимизации, особенно дискретной и комбинаторной оптимизации. По существу, метод является комбинаторным (алгоритм перебора) с отсевом подмножеств множества допустимых решений, не содержащих оптимальных решений.

Для метода ветвей и границ необходимы две процедуры: ветвление и нахождение оценок (границ).

Процедура ветвления состоит в разбиении области допустимых решений на подобласти меньших размеров. Процедuru можно рекурсивно применять к подобластям.

Полученные подобласти образуют дерево, называемое деревом поиска или деревом ветвей и границ.

Процедура нахождения оценок заключается в поиске верхних и нижних границ для оптимального значения на подобласти допустимых решений.

В основе метода ветвей и границ лежит следующая идея (для задачи минимизации): если нижняя граница для подобласти \(A \) дерева поиска больше, чем верхняя граница какой-либо ранее просмотренной подобласти \(B \), то \(A \) может быть исключена из дальнейшего рассмотрения (правило отсева).

Рассмотрим применение метода ветвей и границ к решению задачи о коммивояжёре.

Гамильтоновым контуром называется контур, который проходит через все вершины графа по одному разу.

Оставив без рассмотрения вопрос о существовании гамильтоновых контуров в данном графе, будем рассматривать графы, в которых эти контуры есть.

Пусть на дугах графа задана числовая функция.

Задача коммивояжёра состоит в нахождении в графе гамильтонового контура, имеющего нименьшую цену.

Пусть числовая функция на графе (и сам граф) задана матрицей
Проведём построение первой ветви нашей задачи.
Знаки ∞ на диагонали матрицы показывают, что в графе отсутствуют петли. Отсутствие петель
не является изначально обязательным требованием, но, очевидно, гамильтонов контур не
содержит петель, поэтому их из графа можно удалить.
Гамильтонов контур содержит по одной дуге, выходящей из каждой вершины графа. Цены дуг,
выходящих из данной вершины, указаны в соответствующей строке. Следовательно, цена
гамильтонова контура не может быть меньше минимального элемента этой строки.
Гамильтонов контур проходит через все вершины графа, и его цена не может быть меньше
суммы минимальных элементов всех строк матрицы.
Гамильтонов контур содержит по одной дуге, входящей в каждую вершину. Цены дуг,
входящих в данную вершину, указаны в соответствующем столбце. Поэтому приведённые
выше рассуждения относятся также и к столбцам матрицы.
Проведём следующие преобразования матрицы.
1. В каждой строке матрицы находим минимальный элемент и вычитаем его из всех
элементов строки. Таким образом, минимальный элемент каждой строки новой матрицы
будет равен нулю.
2. В каждом столбце матрицы находим минимальный элемент и вычитаем его из всех
элементов этого столбца.
3. Сумма всех чисел, вычтенных из элементов матрицы, является оценкой снизу для цены
гамильтонова контура (далее – оценка).

В нашем примере.
- Минимальные элементы строк 2 – 6 равны нулю. Эти строки остаются без изменений.
- Минимальный элемент первой строки равен 1. Вычитая 1 из всех элементов первой строки,
получаем матрицу

<table>
<thead>
<tr>
<th>1 2 3 4 5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ∞ 0 5 4 1 6</td>
</tr>
<tr>
<td>2 5 ∞ 3 0 2 6</td>
</tr>
<tr>
<td>3 3 2 ∞ 0 4 2</td>
</tr>
<tr>
<td>4 2 5 0 ∞ 7 0</td>
</tr>
<tr>
<td>5 0 4 2 0 ∞ 0</td>
</tr>
<tr>
<td>6 0 1 6 4 7 ∞</td>
</tr>
</tbody>
</table>

- В полученной матрице нуждается в преобразовании только пятый столбец (минимальный
элемент равен 1). Вычитая 1 из каждого элемента этого столбца, получаем матрицу

<table>
<thead>
<tr>
<th>1 2 3 4 5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ∞ 0 5 4 0 6</td>
</tr>
<tr>
<td>2 5 ∞ 3 0 1 6</td>
</tr>
<tr>
<td>3 3 2 ∞ 0 3 2</td>
</tr>
<tr>
<td>4 2 5 0 ∞ 6 0</td>
</tr>
<tr>
<td>5 0 4 2 0 ∞ 0</td>
</tr>
<tr>
<td>6 0 1 6 4 6 ∞</td>
</tr>
</tbody>
</table>
Вычисляем оценку: 1 + 1 = 2.
Чтобы не увеличивать цену гамильтонова контура, в полученной матрице следует выбрать дугу, цена которой равна 0. Таких дуг несколько. Выберем ту, от которой приведёт к наибольшему увеличению цены контура.
Если отказать от дуги 1:2, цена которой равна 0, то нужно выйти из вершины 1 и войти в вершину 2 по каким-либо другим дугам (например, по дугам 1:5 (цена 0) и 6:2 (цена 1), что даст увеличение цены контура на величину 0+1=1).
Проведём аналогичные рассуждения для всех дуг, имеющих цену 0.

Результат внесём в матрицу

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>∞</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>∞</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>∞</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>∞</td>
</tr>
</tbody>
</table>

Верхние индексы у нулевых элементов содержат нижнюю границу увеличения цены контура при отказе от соответствующей дуги.
Анализ показывает, что самым невыгодным является отказ от дуг 3:4 и 4:3. Выберем одну из них, например, 3:4 и включим её в строящийся гамильтонов контур. На этом шаге выбор произвольный. В дальнейшем необходимо проверять, не создаёт ли наш выбор цикла, охватывающего не все вершины графа. Тем самым мы отказываемся от всех других дуг, исходящих из вершины 3, как и от дуг, входящих в вершину 4. Поэтому удаляем из матрицы третью строку и четвёртый столбец. Кроме этого, мы вынуждены отказаться и от дуги 4:3, что будет отражено в нашей матрице заменой соответствующего элемента символом ∞. Получаем матрицу

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>∞</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>∞</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>∞</td>
</tr>
</tbody>
</table>

Анализируя минимальные элементы строк и столбцов, преобразуем матрицу к новому виду с минимальными элементами во всех строках и столбцах, равными 0, как это было сделано для исходной матрицы, и найдём новую оценку.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>∞</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>∞</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>∞</td>
</tr>
</tbody>
</table>

Из элементов 2-й строки вычиталась 1, после чего из элементов 3-го столбца вычиталась 2. Оценка на этом этапе: 1 + 2 = 3, а оценка для нашей задачи: 2 + 3 = 5. Выясняем, на сколько увеличится стоимость контура, если отказаться от дуг, имеющих стоимость ноль.
Включаем в контур дугу 4:6, имеющую наибольший индекс и строим новую матрицу, исключая строку 4 и столбец 6.
На данном этапе фрагмент гамильтонова контура имеет вид 3 -> 4 -> 6.

Все минимальные элементы равны 0, что не изменяет нашей оценки. Анализ увеличения стоимости контура при отказе от той или иной дуги показывает, что целесообразно отобрать либо дугу 1:2, либо дугу 6:1. Остановимся на дуге 1:2 (включение этой дуги не создает цикла, что видно из схемы 1-2 3-4-6). Проделаем с полученной матрицей уже знакомые шаги.

Оценка осталась прежней (5). Для контура выбираем дугу 2:5, что приводит нас к матрице

При этом получаем цепь 1-2-5-3-4-6.
На этом шаге отбираются дуги 5:3 и 6:1. Таким образом, мы отобрали дуги: 3:4, 4:6, 1:2, 2:5, 5:3, 6:1. Составим из них контур 3-4-6-1-2-5-3. Так как мы отобрали дуги нулевой стоимости, цена контура должна совпадать с нашей оценкой. Возвращаясь к исходной матрице, проверим стоимость контура – 0 + 0 + 0 + 1 + 2 + 2 = 5, что совпадает с оценкой.
Проведённое построение гамильтонова контура является только одной ветвью метода ветвей и границ, позволяющего построить все гамильтоновы контуры минимальной цены данной задачи. Для этого нужно одновременно с выбором дуги, включаемой в контур, рассматривать и альтернативный вариант – невключение дуги в контур, что даёт другую ветвь метода.
Продолжение ветви имеет смысл, если цена гамильтонова контура на ней не превосходит оценок на других ветвях. Это – границы метода.
В этой матрице в 3-й строке минимальный элемент равен 2; вычитаем его из всех элементов этой строки.
Для преобразования матрицы из всех элементов 1-й строки вычитаем 1 и из всех элементов 3-й строки вычитаем 2.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>∞</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>∞</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>∞</td>
</tr>
</tbody>
</table>

Из всех элементов 5-го столбца вычитаем 1:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>∞</td>
</tr>
</tbody>
</table>

Оценка этой матрицы $1 + 2 + 1 = 4$ не превосходит оценки уже рассмотренной ветви, поэтому новую ветвь продолжаем. Кандидат на включение в гамильтонов контур – дуга 4:3. Если не отбирать эту дугу, то, рассматривая соответствующую матрицу, получим оценку 6, что превосходит границу 5.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>∞</td>
</tr>
</tbody>
</table>

Дугу 4:3 включаем в контур и строим соответствующую матрицу с прежней оценкой 4.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

90
Полученная матрица ставит нас перед выбором: включать или не включать дугу 1:5 в строящийся контур. Этот и все последующие шаги изображены на дереве, в вершинах которого указаны оценки гамильтоновых контуров, которые получаются после включения в контур или исключения из графа соответствующих дуг.

1-2-5-4-3-6-1
1 + 2 + 0 + 0 + 2 + 0 = 5.

5.3 Задача о назначениях
Близкой к задаче коммивояжёра как по постановке, так и по решению является задача о назначениях.
Пусть требуется m работников назначить на n должностей. Через a_{ij} обозначим зарплату работника i в должности j. Тогда в матрице

\[
\begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
a_{21} & \cdots & a_{2n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{pmatrix}
\]

нужно в каждой строке и каждом столбце выбрать не более, чем по одному элементу. Если желательно минимизировать суммарную зарплату, то сумма выбранных элементов должна быть минимальна (аналогично, в задаче о коммивояжёре при построении гамильтонова контура минимальной цены в матрице стоимостей необходимо выбрать по одному элементу из каждой строки и столбца, чтобы их сумма была минимальной).
Отличие задачи о назначениях заключается в наличии в соответствующем графе петель и возможном различии числа строк и столбцов.
При решении задачи о назначении прежде всего достроим матрицу до квадратной, добавляя нужное количество нулевых строк или столбцов (зарплаты несуществующих работников, как и в несуществующей должности, равна 0). Затем используем тот же метод, что и при решении задачи коммивояжёра с тем отличием, что «противоположная дуга» не исключается.
Рассмотрим пример. Пусть имеется три работника и четыре должности. Матрица зарплат имеет вид

\[
\begin{bmatrix}
4 & 7 & 5 & 3 \\
5 & 6 & 4 & 2 \\
4 & 5 & 6 & 4 \\
\end{bmatrix}
\]

Вводя фиктивного четвёртого работника, получим матрицу

\[
\begin{bmatrix}
4 & 7 & 5 & 3 \\
5 & 6 & 4 & 2 \\
4 & 5 & 6 & 4 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Вычитая из строк минимальные элементы, получаем матрицу

\[
\begin{bmatrix}
1 & 4 & 2 & 0^1 \\
3 & 4 & 2 & 0^2 \\
0 & 1 & 2 & 0^0 \\
0^0 & 0^1 & 0^2 & 0^0 \\
\end{bmatrix}
\]

и оценку минимальной суммы зарплат 9. Оценив потери при отказе от нулевых зарплат, выберем назначение четвёртого (фиктивного) работника на третью должность. Получаем новую матрицу

\[
\begin{bmatrix}
1 & 2 & 4 \\
1 & 1 & 4 & 0 \\
2 & 3 & 4 & 0 \\
3 & 0 & 1 & 0 \\
\end{bmatrix}
\]

Вычитая из второго столбца 1, преобразуем матрицу к виду

\[
\begin{bmatrix}
1 & 2 & 4 \\
1 & 3 & 0^1 \\
2 & 3 & 0^3 \\
3 & 0^1 & 0^3 & 1 \\
\end{bmatrix}
\]

Оценка этой матрицы равна 10.
Назначаем второго работника на четвёртую должность

\[
\begin{bmatrix}
1 & 2 \\
1 & 3 \\
0 & 0 \\
\end{bmatrix}
\]

Оценка равна 11, выбираем элементы 1:1 и 3:2.
Таким образом, мы рассмотрели одну ветвь и получили назначения 1 -> 1, 2 -> 4, 3 ->2 с суммой зарплат 11. Полное дерево этой задачи выглядит следующим образом.

92
К началу анализируемого периода на предприятии установлено новое оборудование.
Определить оптимальный цикл замены оборудования при следующих исходных данных:
dлительность планируемого периода \(N = 8 \) лет;
остаточная стоимость оборудования возраста \(t \) лет \(S(t) = 0 \);
покупная цена оборудования \(P = 12 \) ден. ед.;
\(R(t) \) – стоимость продукции, производимой на оборудовании возраста \(t \) лет;
\(Z(t) \) – ежегодные затраты на содержание оборудования возраста \(t \) лет;
\(f(t)=R(t)-Z(t) \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Ответ. Оборудование целесообразно заменить через 4 года.
Найти оптимальную стратегию замены оборудования на период продолжительностью 6 лет,
если годовой доход \(f(t) \) и остаточная стоимость оборудования \(S(t) \) в зависимости от возраста \(t \) заданы таблицей

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(S(t))</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Покупная стоимость нового оборудования \(P=13 \). Возраст оборудования к началу рассматриваемого периода составляет 1 год.
Ответ: начало третьего года.
Найти оптимальную стратегию замены оборудования на период продолжительностью 6 лет,
если годовой доход \(f(t) \) и остаточная стоимость оборудования \(S(t) \) в зависимости от возраста \(t \) заданы таблицей

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>(S(t))</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Стоимость нового оборудования \(P=10 \). Возраст оборудования к началу рассматриваемого периода составляет 1 год.
Ответ: третий год.
Предприниматель закупил и установил за 40 млн. руб. новую деревообрабатывающую линию станков для производства стройматериалов. Динамика объёмов продажи стройматериалов, затраты на эксплуатацию станков и их остаточная стоимость по годам приведены в таблице.
Определите оптимальный план замены оборудования, обеспечивающий максимальный объём продаж страйматериалов.

Ответ: второй год.

Определите оптимальный срок эксплуатации нового легкового автомобиля, его продажи и покупки нового автомобиля. Динамика изменения ликвидационной стоимости и затрат на ремонт в относительных единицах к цене нового автомобиля приведены в таблице.

Ответ: начало четвёртого года эксплуатации.

Торговая фирма располагает 5 автолавками, которые могут быть направлены в воскресный день в 3 населённых пункта. Считается, что товарооборот фирмы зависит лишь от количества и ассортимента направляемых товаров и определяется числом посланных в тот или иной населённый пункт машин. Среднее значение товарооборота в тысячах рублей в каждом из населённых пунктов представлено в таблице.

Ответ. В первый населённый пункт направить 1 автолавку, во второй – 3, в третий -1. При этом товарооборот будет максимальный и равный 64 тыс. руб.

В трёх областях необходимо построить 5 предприятий по переработке сельскохозяйственной продукции одинаковой мощности. Разместить предприятия таким образом, чтобы обеспечить минимальные суммарные затраты на их строительство и эксплуатацию.

Функции расходов $g_i(x)$, характеризующие величину затрат на строительство и эксплуатацию в зависимости от количества размещаемых предприятий в i-й области приведены в таблице.
Известен возможный прирост выпуска продукции 4 предприятиями в млн. рублей при осуществлении инвестиций на их модернизацию с дискретностью 50 млн. руб.
Составить план распределения инвестиций между предприятиями, дающий максимальный общий прирост выпуска продукции.

<table>
<thead>
<tr>
<th>$g_1(x)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>14</td>
<td>22</td>
<td>29</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>$g_2(x)$</td>
<td>10</td>
<td>17</td>
<td>18</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>15</td>
<td>26</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Известен возможный прирост выпуска продукции 4 предприятиями в млн. рублей при осуществлении инвестиций на их модернизацию с дискретностью 50 млн. руб.
Составить план распределения инвестиций между предприятиями, дающий максимальный общий прирост выпуска продукции.

<table>
<thead>
<tr>
<th>Инвестиции, млн. руб.</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прирост выпуска продукции, млн. руб. предприятие</td>
<td>25</td>
<td>60</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>70</td>
<td>90</td>
<td>122</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>64</td>
<td>95</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>56</td>
<td>110</td>
<td>142</td>
</tr>
</tbody>
</table>

Ответ. Инвестировать третьему предприятию 50 млн. руб., четвёртому – 150 млн. руб. Максимальный прирост выпуска продукции составит 146 млн. руб.
На развитие трёх предприятий выделено 5 млн. руб. Известна эффективность капитальных вложений в каждое предприятие, заданная таблицей.

<table>
<thead>
<tr>
<th>Инвестиции</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Доход, получаемый от инвестиций в предприятие, млн. руб.</td>
<td>0</td>
<td>2,2</td>
<td>3</td>
<td>4,1</td>
<td>5,2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3,2</td>
<td>4,8</td>
<td>6,2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2,8</td>
<td>5,4</td>
<td>6,4</td>
<td>6,6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>6,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Необходимо распределить выделенные средства между предприятиями так, чтобы получить максимальный доход от деятельности предприятий.
Ответ: 1-му предприятию – 1 млн. руб.;
2-му – 2 млн. руб.;
3-му – 2 млн. руб.
Максимальный доход – 10,8 млн. руб.
Распределите оптимальным образом денежные средства инвестора между четырьмя предприятиями. Доход от вложений средств в каждое предприятие задан таблицей.

95
Фирма должна определить стратегию производства некоторой продукции и уровень её запасов на каждый месяц планового периода. Длительность последнего составляет 3 месяца. Маркетинговые исследования позволили определить, что спрос \(D_t \) на продукцию фирмы в \(t \)-м месяце планового периода равен:

\[
D_1 = 4; \quad D_2 = 3; \quad D_3 = 3.
\]

Запас продукции фирмы на начало планового периода равен \(i_0 = 2 \).

Затраты на производство и хранение продукции определяются по формуле

\[
f = \sum_{t=1}^{6} c_t(x_t, i_t) = \sum_{t=1}^{6} (10x_t + h \cdot i_t),
\]

где

- \(x_t \) – количество выпускаемой продукции в \(t \)-м месяце,
- \(i_t \) – уровень запасов продукции на конец \(t \)-го месяца,
- \(h = 1 \) – некоторая постоянная.

Требуется спланировать уровень производства и уровень запасов продукции на фирме, обеспечивающий минимальные затраты при условии, что уровень запасов продукции на конец планового периода должен быть \(i_3 = 0 \).

Ответ:

<table>
<thead>
<tr>
<th>Месяцы периода</th>
<th>Единицы продукции</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Минимальные затраты равны 80 ден. ед.

Решить следующие задачи управления запасами.

Фирма планирует производство и уровень запасов производимой фирмой продукции на плановый период равным 6 месяцам. Спрос на продукцию фирмы в каждом месяце планового периода соответственно равен:

\[
D_1 = 3; \quad D_2 = 4; \quad D_3 = 3; \quad D_4 = 4; \quad D_5 = 3; \quad D_6 = 3,
\]

где \(D_t \) – спрос на продукцию фирмы в \(t \)-м месяце.

Предполагается, что запас продукции фирмы на начало планового периода равен \(i_0 \). Затраты на производство и хранение продукции определяются по формуле

\[
f = \sum_{t=1}^{6} c_t(x_t, i_t) = \sum_{t=1}^{6} (10x_t + h \cdot i_t),
\]

где

- \(x_t \) – количество выпускаемой продукции в \(t \)-м месяце,
- \(i_t \) – уровень запасов продукции на конец \(t \)-го месяца,
- \(h = 1 \) – некоторая постоянная.

Значения \(i_0 \) и \(i_6 \) представлены в таблице.
Требуется спланировать уровень производства и уровень запасов продукции, обеспечивающие минимальные затраты при условии, что уровень запасов на конец планового периода равен i_6.

Требуется доставить груз из пункта A в пункт B. Схема дорог и стоимость перевозки груза по каждой из дорог представлены ориентированными графами.

Ответ. (а) $0 \rightarrow 2 \rightarrow 4 \rightarrow 5$, стоимость 12.

(б) $0 \rightarrow 4 \rightarrow 3 \rightarrow 8$, стоимость 10.

(в) $0 \rightarrow 2 \rightarrow 5$.

(г) $0 \rightarrow 4 \rightarrow 7 \rightarrow 8$
Задача коммивояжёра.
Для ориентированных графов, заданных матрицами стоимостей, найти гамильтонов контур наименьшей стоимости, используя метод ветвей и границ.

(a) ±9 90 80 40 100
±60 ±∞ 40 50 70
±50 ±30 ±∞ 60 20
±10 ±70 ±20 ±∞ ±50
±20 ±40 50 20 ±∞

(b) ±∞ ±7 ±∞ ±8 ±8 ±∞
±3 ±∞ ±8 ±∞ ±7 ±∞
±∞ ±3 ±∞ ±5 ±∞ ±8 ±∞
±∞ ±∞ ±8 ±∞ ±4 ±5 ±∞
±3 ±∞ ±7 ±∞ ±∞ ±∞ ±∞
±4 ±3 ±3 ±8 ±4 ±∞ ±∞

(в) ±∞ ±5 ±∞ ±1 ±9
±1 ±∞ ±1 ±∞ ±∞ ±1
±∞ ±5 ±∞ ±5 ±∞ ±∞
±∞ ±∞ ±3 ±∞ ±9 ±5
±1 ±∞ ±∞ ±5 ±∞ ±∞
±5 ±1 ±3 ±5 ±9 ±∞

(г) ±∞ ±5 ±∞ ±1 ±6
±5 ±∞ ±1 ±∞ ±∞ ±7
±∞ ±3 ±∞ ±6 ±∞ ±5
±∞ ±∞ ±9 ±∞ ±7 ±3
±5 ±∞ ±∞ ±5 ±∞ ±9
±9 ±5 ±1 ±6 ±7 ±∞

(д) ±∞ ±2 ±∞ ±∞ ±8 ±7
±5 ±∞ ±8 ±∞ ±∞ ±2
±∞ ±2 ±∞ ±6 ±∞ ±8
±∞ ±∞ ±7 ±∞ ±6 ±6
±5 ±∞ ±∞ ±2 ±∞ ±6
±6 ±5 ±2 ±7 ±∞ ±∞

Используя метод ветвей и границ, решить задачу о назначениях.

(a)
1 9 8 6
15 3 13 7
13 13 15 10
3 14 12 17

Ответ: 24,
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(б)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>8</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

Ответ: 26,

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(в)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>5</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Ответ: 14,

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(г)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>5</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Ответ: 8,

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
6. Элементы теории игр

6.1 Основные понятия
Игра – это упрощенная математическая модель конфликтной ситуации. Методы теории игр применимы к многократно повторяющимся конфликтным ситуациям. Игра имеет определенные правила. Каждый участник принимает такое решение, которое обеспечит, по его мнению, наилучший исход (выигрыш). Функция выигрыша (платежная функция) обычно задается в матричном или аналитическом виде. Величина выигрыша зависит от стратегии игрока. Стратегия называется оптимальной, если она обеспечивает игроку максимально возможный средний выигрыш при многократном повторении игры. Если количество стратегий игрока конечно, то игра называется конечной. Если количество стратегий игрока бесконечно, то игра называется бесконечной.

6.2 Матричные игры
Рассмотрим игру с двумя игроками. Пусть игрок \(A \) имеет \(m \) стратегий, а игрок \(B \) — \(n \) стратегий.
Обозначим стратегии игрока \(A \) как \(A_1, A_2, \ldots, A_m \), а стратегии игрока \(B \) — как \(B_1, B_2, \ldots, B_n \).
Если игрок \(A \) выбрал стратегию \(A_i \), а игрок \(B \) — стратегию \(B_k \), то выигрыш игрока \(A \) составит \(a_{ik} \), а игрока \(B - b_{ik} \), причем
\[
a_{ik} = -b_{ik} \tag{4.1}
\]
Поэтому при анализе такой игры достаточно рассмотреть выигрыш только одного игрока, например выигрыш \(a_{ik} \) игрока \(A \). Зная выигрыш \(a_{ik} \) по формуле (4.1) легко определить выигрыш \(b_{ik} \).
Такие матричные игры называются парными играми с нулевой суммой, в которых выигрыш одного игрока равен проигрышу другого.
Если известны все значения \(a_{ik} \) для каждой пары стратегий \(\{A_i B_k\} \), \(i = 1, 2, \ldots, m \), \(k = 1, 2, \ldots, n \), то их удобно записать в виде прямоугольной матрицы, строки которой соответствуют стратегиям игрока \(A \), а столбцы — стратегиям игрока \(B \) (табл.1.1).

<table>
<thead>
<tr>
<th></th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(\ldots)</th>
<th>(B_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(a_{11})</td>
<td>(a_{12})</td>
<td>(\ldots)</td>
<td>(a_{1n})</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(a_{21})</td>
<td>(a_{22})</td>
<td>(\ldots)</td>
<td>(a_{2n})</td>
</tr>
<tr>
<td>(\ldots)</td>
</tr>
<tr>
<td>(A_m)</td>
<td>(a_{m1})</td>
<td>(a_{m2})</td>
<td>(\ldots)</td>
<td>(a_{mn})</td>
</tr>
</tbody>
</table>

Часто эти выигрыши записывают в виде платежной матрицы (матрицы игры) размера \(m \times n \), поэтому такие игры называют матричными играми \(m \times n \):
\[
A = \begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}
\]

Подобная матричная игра называется антагонистической, в ней интересы игроков противоположны.

> Пример 1. Пусть игроки \(A \) и \(B \) одновременно и независимо друг от друга записывают числа 1 или 2. Если записанные числа одинаковы, то игрок \(A \) выигрывает одно очко, если разные, то одно очко выигрывает игрок \(B \). Построить платежную матрицу данной игры.
Решение. У игрока \(A \) две стратегии: \(A_1 \) — записать число 1; \(A_2 \) — записать число 2. У игрока \(B \) также две стратегии: \(B_1 \) — записать число 1; \(B_2 \) — записать число 2.
Матрица выигрышей игрока A в этой игре 2×2 имеет вид

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

В данной матрице строки соответствуют стратегиям игрока A, а столбцы — стратегиям игрока B. Действительно, если игрок A делает ход A_1, а игрок B ход B_1, то одно очко выигрывает игрок A и $a_{11} = 1$ (соответственно, игрок B проигрывает -1). Если игрок A делает ход A_2, а игрок B ход B_2, то одно очко выигрывает игрок B, соответственно игрок A это очко проигрывает, т.е. $a_{22} = -1$ и т.д.

В примере 1 рассмотрена простейшая математическая модель конечной конфликтной ситуации, когда имеются два участника и выигрыш одного равен проигрышу другого. Такая модель называется антагонистической игрой двух лиц с нулевой суммой.

6.3 Равновесная ситуация

Пусть матричная игра $m \times n$ задана платежной матрицей

$$A = \begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{pmatrix} \quad (4.2)$$

Строки этой матрицы соответствуют стратегиям игрока A, а столбцы — стратегиям игрока B. В теории игр предполагается, что оба игрока действуют разумно, т.е. стремятся к получению максимального выигрыша, считая, что соперник действует наилучшим для себя образом. Определим оптимальные стратегии каждого из игроков. Начнем с анализа стратегий игрока A. На стратегию 4 игрока A игрок B ответит такой стратегией B_n, при которой выигрыш игрока A будет минимальным. Аналогично игрок B будет отвечать на все m стратегий игрока A. Другими словами, найдем в каждой строке матрицы минимальный элемент (минимальные выигрыши игрока A): $\alpha_i = \min_k a_{ik}, i = 1, 2, \ldots, m$

И запишем их в правом столбце табл. 2.

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>\ldots</th>
<th>B_k</th>
<th>\ldots</th>
<th>B_n</th>
<th>Минимальные выигрыши игрока A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>a_{11}</td>
<td>a_{12}</td>
<td>\ldots</td>
<td>a_{1k}</td>
<td>\ldots</td>
<td>a_{1n}</td>
<td>α_1</td>
</tr>
<tr>
<td>A_2</td>
<td>a_{21}</td>
<td>a_{22}</td>
<td>\ldots</td>
<td>a_{2k}</td>
<td>\ldots</td>
<td>a_{2n}</td>
<td>α_2</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ddots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>A_i</td>
<td>a_{i1}</td>
<td>a_{i2}</td>
<td>\ldots</td>
<td>a_{ik}</td>
<td>\ldots</td>
<td>a_{in}</td>
<td>α_i</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ddots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>A_m</td>
<td>a_{m1}</td>
<td>a_{m2}</td>
<td>\ldots</td>
<td>a_{mk}</td>
<td>\ldots</td>
<td>a_{mn}</td>
<td>α_m</td>
</tr>
</tbody>
</table>

Максимальные выигрыши игрока A

| β_1 | β_2 | \ldots | β_k | \ldots | β_n |

Действуя разумно, игрок A остановится на той стратегии A_i, для которой α_i окажется максимальным. Поэтому среди чисел $\alpha_i = \min_k a_{ik}$ выбираем максимальное число

$$\alpha = \max_i \alpha_i = \max_k \min_i a_{ik} \quad (4.3)$$

101
Число \(\alpha \) называется нижней ценой игры.
Принцип построения стратегий игрока \(A \), основанный на максимизации минимальных выигрышей, называется принципом максимина (maxmin).
Проведем анализ стратегий игрока \(B \). Для этого найдем в каждом столбце матрицы максимальный элемент (максимальные выигрыши игрока \(A \)):
\[
\beta_k = \max_i \alpha_{ik}, \ k = 1, 2, ..., n
\]
и запишем их в нижней строке табл. 15. Действуя разумно, игрок \(B \) остановится на той стратегии \(B_k \), для которой окажется \(B_k \) минимальным. Поэтому среди чисел \(\beta_k = \max_i \alpha_{ik} \)
выбираем минимальное число
\[
\beta = \min_k \beta_k = \min_k \max_i a_{ik} \tag{4.4}
\]
Число \(\beta \) называется верхней ценой игры.
Принцип построения стратегий игрока \(B \), основанный на минимизации максимальных выигрышей, называется принципом минимакса (minmax).
Нижняя цена игры \(\alpha \) и верхняя цена игры \(\beta \) связаны неравенством
\[
\alpha \leq \beta \tag{4.5}
\]
Если \(\alpha = \beta = a_{i_{opt}; k_{opt}} \) или
\[
\max_i \min_k a_{ik} = \min_k \max_i a_{ik} = a_{i_{opt}; k_{opt}} \tag{4.6}
\]
то ситуация \((A_{i_{opt}}, B_{k_{opt}}) \) оказывается равновесной, и ни один игрок не заинтересован в том, чтобы ее нарушить. В том случае когда верхняя цена игры равна нижней, их называют просто ценой игры.
Если \(\alpha = \beta \), то такую игру называют также игрой с седловой точкой, а пара оптимальных стратегий \((A_{i_{opt}}, B_{k_{opt}}) \) - седловой точкой матрицы. Цена игры обозначается буквой \(\nu \). Тогда \(\nu = a_{i_{opt}; k_{opt}} \).
Седловых точек в матричной игре может быть несколько, но все они имеют одно и то же значение.
Заметим, что седловой элемент \(a_{i_{opt}; k_{opt}} \) является наименьшим в i-й строке \(i_{opt} \), содержащей седловой элемент, и наибольшим в k-м столбце \(k_{opt} \), также содержащем седловой элемент:
\[
a_{i_{opt}; k_{opt}} \leq a_{i_{opt}; k_{opt}} \leq a_{i_{opt}; k_{opt}} \tag{4.7}
\]
Пример 2. Игроки \(A \) и \(B \) записывают одну из трех цифр: 1, 2 или 3. Затем сравнивают эти цифры и расплачиваются друг с другом так, как показано в платежной матрице размера 3×3:
\[
A = \begin{pmatrix}
-2 & 2 & -1 \\
2 & 1 & 1 \\
3 & -3 & 1
\end{pmatrix}.
\]
Определить оптимальные стратегии.
Решение: Здесь строки соответствуют стратегиям игрока \(A \), а столбцы - стратегиям игрока \(B \). Стратегии игрока \(A \): \(A_1 = 1; \ A_2 = 2; \ A_3 = 3 \).
Стратегии игрока \(B \): \(B_1 = 1; \ B_2 = 2; \ B_3 = 3 \).
Определить оптимальные стратегии каждого из игроков. Начнем с анализа стратегий игрока \(A \). Игрок \(A \) анализирует свою стратегию на максимин (maxmin), т.е. на максимальный из своих минимальных выигрышей. На стратегию \(A_1 \) игрок \(B \) ответит стратегией \(B_1 \), т.е. той стратегией, при которой выигрыш игрока \(A \) будет минимальным (выигрыш -2 игрока \(A \) означает его проигрыш +2). На стратегию \(A_2 \) игрок \(A \) игрок \(B \) ответит стратегией \(B_2 \) (минимальный выигрыш игрока \(A \) равен 1), на стратегию \(A_3 \) – стратегией \(B_2 \) (минимальный выигрыш игрока \(A \) равен -3). Запишем минимальные выигрыши игрока \(A \) в правом столбце табл. 3.

102
По правому столбцу таблицы игрок А остановит свой выбор на стратегии А₂, при которой его минимальный выигрыш максимален. Это максимальное значение называется максимин (maxmin). В данном случае maxmin = 1. Если игрок А будет придерживаться этой стратегии, то ему гарантирован выигрыш, не меньший 1, при любом поведении противника.
Аналогично проведем анализ стратегий игрока В. Игрок В анализирует свою стратегию на минимакс (minmax), т.е. на минимальный из максимальных выигрышей игрока А. На стратегию В₁ игрок В игрок А ответит стратегией А₃, т.е. той стратегией, при которой его выигрыш будет максимальным и равным 3. На стратегию В₂ игрок В игрок А ответит стратегией А₁ (его максимальный выигрыш равен 2), на стратегию В₃ - стратегией А₃ (его максимальный выигрыш равен 1). Запишем максимальные выигрыши игрока А в нижней строке табл.3. В данном случае minmax = 1. Если игрок В будет придерживаться этой стратегии, то он проиграет не больше 1 при любом поведении противника.
Таким образом, в рассматриваемой игре maxmin и minmax совпали:
maxmin = minmax = 1.
Таким образом, ситуация оказывается равновесной, матрица игры имеет седловую точку α=β=1.

6.4 Смешанные стратегии
Если платежная матрица не имеет седловой точки, т.е. α<β, то поиск решения игры приводит к применению сложной стратегии, состоящей в случайном применении двух и более стратегий с определенными частотами. Такая сложная стратегия называется смешанной.
В табл.4 приведен пример, когда нижняя цена игры α не совпадает с верхней ценой игры β.

Таблица 3

<table>
<thead>
<tr>
<th></th>
<th>B₁</th>
<th>B₂</th>
<th>B₃</th>
<th>Минимальные выигрыши игрока A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>A₂</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A₃</td>
<td>3</td>
<td>-3</td>
<td>1</td>
<td>-3</td>
</tr>
</tbody>
</table>

| Максимальные выигрыши игрока A | 3 | 2 | 1 |

Таблица 4

<table>
<thead>
<tr>
<th></th>
<th>B₁</th>
<th>B₂</th>
<th>B₃</th>
<th>Минимальные выигрыши игрока A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>4</td>
<td>1</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>A₂</td>
<td>-2</td>
<td>1</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>A₃</td>
<td>0</td>
<td>2</td>
<td>-3</td>
<td>-3</td>
</tr>
</tbody>
</table>

| Максимальные выигрыши игрока A | 4 | 2 | 3 |
Здесь $\alpha = -2$, а $\beta = 2$. Игрок A может выиграть не менее -2 (знак $\leftarrow -$ перед цифрой означает проигрыш игроком B двух единиц), а игрок B может ограничить свой проигрыш (выигрыш игрока A) двумя единицами. Область между числами -2 и 2 остается нейтральной, и каждый игрок может попытаться улучшить свой результат за счет этой области. Для компромиссного распределения разности $\beta - \alpha$ при многократном повторении игры игроками используется случайное применение своих чистых стратегий. Это обеспечивает наибольшую скрытность выбора стратегии, поскольку результат выбора не может быть известен противнику, так как он неизвестен самому игроку.

Обратимся к общему случаю матричной игры, представленной в табл. 2. Обозначим через $p_1, p_2, ..., p_m$ вероятности, с которыми игрок A использует в ходе игры свои чистые стратегии $A_1, A_2, ..., A_m$. Для этих вероятностей выполняются условия

$$\sum_{i=1}^{m} p_i = 1; \quad p_1 \geq 0, \quad p_2 \geq 0, ..., \quad p_m \geq 0.$$ (4.8)

Вектор $p = (p_1, p_2, ..., p_m)$, удовлетворяющий условиям (8), полностью определяет характер игры игрока A и называется его смешанной стратегией. Механизм случайного выбора чистых стратегий, которым пользуется игрок A, обеспечивает ему бесконечное множество смешанных стратегий.

Аналогично, вектор $q = (q_1, q_2, ..., q_m)$, удовлетворяющий условиям (4.9),

$$\sum_{i=1}^{m} q_i = 1; \quad q_1 \geq 0, \quad q_2 \geq 0, ..., \quad q_n \geq 0.$$ (4.9)

полностью определяет характер игры игрока B и называется смешанной стратегией игрока B. Игрок B, как и игрок A, располагает бесконечным множеством смешанных стратегий.

Пусть игроки A и B применяют смешанные стратегии \bar{p} и \bar{q} соответственно, т.е. игрок A использует стратегию A_i с вероятностью p_i, а игрок B – стратегию B_k с вероятностью q_k. Поскольку события A_i и B_k независимы, то вероятность появления комбинации (A_i, B_k) равна произведению вероятностей p_i и q_k, т.е. p_iq_k. При использовании смешанных стратегий игра приобретает случайный характер, случайными становятся и величины выигрышей игроков. Поэтому Выигрыш игрока A (проигрыш игрока B) определяют его математическим ожиданием, рассчитываемым по формуле

$$E(A, \bar{p}, \bar{q}) = \sum_{i=1}^{m} \sum_{k=1}^{n} a_{ik} p_i q_k.$$ (4.10)

Функция (4.10) называется платежной функцией игры с матрицей, заданной табл. 5.

Нижней ценой игры называется число α, рассчитываемое по формуле:

$$\alpha = \max_{\bar{p}} \min_{\bar{q}} E(A, \bar{p}, \bar{q})$$ (4.11)

Верхней ценой игры называется число β, рассчитываемое по формуле:

$$\beta = \min_{\bar{p}} \max_{\bar{q}} E(A, \bar{p}, \bar{q})$$ (4.12)
Таблица 5

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>…</th>
<th>B_k</th>
<th>…</th>
<th>B_n</th>
<th>Вероятности использования чистых стратегий игроком A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>a_{11}</td>
<td>a_{12}</td>
<td>…</td>
<td>a_{1k}</td>
<td>…</td>
<td>a_{1n}</td>
<td>p_1</td>
</tr>
<tr>
<td>A_2</td>
<td>a_{21}</td>
<td>a_{22}</td>
<td>…</td>
<td>a_{2k}</td>
<td>…</td>
<td>a_{2n}</td>
<td>p_2</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>A_i</td>
<td>a_{i1}</td>
<td>a_{i2}</td>
<td>…</td>
<td>a_{ik}</td>
<td>…</td>
<td>a_{in}</td>
<td>p_i</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>A_m</td>
<td>a_{m1}</td>
<td>a_{m2}</td>
<td>…</td>
<td>a_{mk}</td>
<td>…</td>
<td>a_{mn}</td>
<td>p_m</td>
</tr>
</tbody>
</table>

| Вероятности использования чистых стратегий игроком B | q_1 | q_2 | … | q_k | … | q_n |

Оптимальными смешанными стратегиями называются стратегии, удовлетворяющие соотношению (сравнить с формулой (6))

$$\max_{p} \min_{q} E(A, p, q) = \min_{p} \max_{q} E(A, p, q) = E(A, p_{opt}, q_{opt})$$

(4.13)

Величину

$$\nu = E(A, p_{opt}, q_{opt})$$

определенную соотношением (4.13), называют ценой игры.

Дадим другое определение оптимальных смешанных стратегий. Основная теорема теории матричных игр (теорема Неймана). Для матричной игры с любой матрицей A величины $\min_{p} \max_{q} E(A, p, q)$ и $\max_{p} \min_{q} E(A, p, q)$ существуют и равны между собой:

$$\max_{p} \min_{q} E(A, p, q) = \min_{p} \max_{q} E(A, p, q).$$

Более того, существует хотя бы одна ситуация в смешанных стратегиях (p_{opt}, q_{opt}), для которой выполняется соотношение

$$E(A, p_{opt}, q_{opt}) = \max_{p} \min_{q} E(A, p, q) = \min_{p} \max_{q} E(A, p, q).$$

Основные свойства оптимальных смешанных стратегий. Пусть

$$p_{opt} = p_{opt} (p_1, p_2, \ldots, p_{m, opt}), \quad q_{opt} = q_{opt} (q_1, q_2, \ldots, q_{m})$$

– оптимальные смешанные стратегии и

$$\nu = E(A, p_{opt}, q_{opt})$$

– цена игры.

Оптимальная смешанная стратегия p_{opt} игрока A складывается только из тех чистых стратегий $A_i, i=1, 2, \ldots, m$ (т.е. только те вероятности $p_i, i=1, 2, \ldots, m$, могут отличаться от нуля), для которых
\[\sum_{k=1}^{n} a_{ik} q_{k, \text{opt}} = v. \]

Аналогично, только те вероятности \(q_k \), \(k=1, 2, \ldots, n \), могут отличаться от нуля, для которых
\[\sum_{i=1}^{m} a_{ik} q_{i, \text{opt}} = v. \]

Имеют место соотношения
\[v = \min_{1 \leq i \leq m} \sum_{i=1}^{m} a_{ik} p_{i, \text{opt}} = \max_{p} \min_{1 \leq i \leq m} a_{ik} p_{i} = \min_{q} \max_{1 \leq k \leq n} \sum_{k=1}^{n} a_{ik} q_{k} = \max_{q} \min_{1 \leq k \leq n} \sum_{k=1}^{n} a_{ik} q_{k, \text{opt}} = v. \quad (4.14) \]

Рассмотрим методы решения некоторых матричных игр.

4.5. Графическое решение матричных игр

Рассмотрим игру, в которых хотя бы один игрок имеет две стратегии.

Пусть это игра \(2 \times n \), представленная в табл.6. Она не имеет седловой точки. Согласно теореме 2 имеем
\[v = \min_{1 \leq k \leq n} \sum_{i=1}^{2} a_{ik} p_{i, \text{opt}} = \min \max (a_{ik} p_{i, \text{opt}}, a_{2k} (1 - p_{\text{opt}})) = \max \min (a_{ik} p_{i} + a_{2k} (1 - p)) \quad (4.15) \]

<table>
<thead>
<tr>
<th>Таблица 6</th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(\ldots)</th>
<th>(B_k)</th>
<th>(\ldots)</th>
<th>(B_n)</th>
<th>Вероятности использования чистых стратегий игроком (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(a_{11})</td>
<td>(a_{12})</td>
<td>(\ldots)</td>
<td>(a_{1k})</td>
<td>(\ldots)</td>
<td>(a_{1n})</td>
<td>(p)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(a_{21})</td>
<td>(a_{22})</td>
<td>(\ldots)</td>
<td>(a_{2k})</td>
<td>(\ldots)</td>
<td>(a_{2n})</td>
<td>(1 - p)</td>
</tr>
<tr>
<td>Вероятности использования чистых стратегий игроком (A)</td>
<td>(q_1)</td>
<td>(q_2)</td>
<td>(\ldots)</td>
<td>(q_k)</td>
<td>(\ldots)</td>
<td>(q_n)</td>
<td></td>
</tr>
</tbody>
</table>

Максимум функции
\[\min (a_{ik} p_{i} + a_{2k} (1 - p)) \quad (4.16) \]

найдем, построив ее график. Для этого поступаем следующим образом. Построим прямые
\[w_k = a_{ik} p_{i} + a_{2k} (1 - p) = (a_{ik} - a_{2k}) p + a_{2k} \quad (4.17) \]

для каждого \(k = 1, 2, \ldots, n \) в системе координат \(\rho \omega \) (рис. 1). В соответствии с требованием (4.16) на каждой из построенных прямых определяются и отмечаются наименьшие значения. На рис. 2 эти значения выделены полужирной ломаной линией. Эта ломаная огибает снизу все семейство построенных прямых и называется нижней огибающей семейства.

В соответствии с (4.15) цену игры \(v \) определяет верхняя точка построенной нижней огибающей. Координаты этой точки являются оптимальной стратегией игрока \(A \):
\[P_{\text{opt}} = P_{\text{opt}} (P_{\text{opt}}; (1 - P_{\text{opt}})). \]
Рисунок 3. Найти решение игры $2 \times n$, приведенной в табл. 7.

Таблица 7

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>…</th>
<th>B_k</th>
<th>…</th>
<th>B_n</th>
<th>Вероятности использования чистых стратегий игроком A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>p</td>
</tr>
<tr>
<td>A_2</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>$1-p$</td>
</tr>
</tbody>
</table>

Вероятности использования чистых стратегий игроком B

| | q_1 | q_2 | … | q_k | … | q_n |

Решение. Проведем анализ игры на наличие седловой точки. Нижняя цена игры равна -1, верхняя цена равна 1. Седловой точки нет. Решение надо искать в смешанных стратегиях.

Построим график нижней огибающей (4.16). Предварительно запишем уравнения прямых (4.17):

- $w_1=6p-2(1-p)=8p-2$
- $w_2=4p-1(1-p)=5p-1$
- $w_3=3p+(1-p)=2p+1$
- $w_4=p+0(1-p)=p$
- $w_5=-p+5(1-p)=-6p+5$
- $w_6=0*+4(1-p)=-4p+4$

Графики данных прямых, построенных в системе координат рOw, представлены на рис. 3. Нижняя огибающая выделена на рис. 3 полужирной ломаной линией.

Точка максимума нижней огибающей лежит на пересечении прямых w_4 и w_5. Решая уравнение $p=-6p+5$, получим $p_{opt}=\frac{5}{7}$. Цена игры, являющаяся математическим ожиданием выигрыша A, равна $v = E(A, p_{opt}, q_{opt}) = \frac{5}{7}$.

107
Таким образом, цена игры и оптимальная стратегия игрока A равны:

$$
\nu = \frac{5}{7}; \quad p_{opt} = \left(\frac{5}{7}, \frac{2}{7}\right).
$$

Иногда решение матричной игры сводится только к поиску оптимальных смешанных стратегий игрока A. При этом стратегии противника могут не интересовать исследователя. Однако в целом ряде случаев необходимо знать оптимальные смешанные стратегии обоих игроков.

Пусть в наивысшей точке нижней огибающей пересекаются прямые w_k и w_l (рис. 4), при этом прямая w_k положительный наклон, а прямая w_l — отрицательный. Мнимальная смешанная стратегия игрока B получается, если положить

$q_k = q, \quad q_l = 1-q, \quad q_j = 0$ при $j \neq k,l$,

где q находят из уравнения

$q_k a_1 + a_2 (1-q) = q_l a_1 + a_2 (1-q)$.

Таким образом, игрок B применяет стратегию B_k с вероятностью q_k, а стратегию B_l — с вероятностью q_l.

Пример 4. Для условий примера 3 определить смешанные стратегии игрока B.

Решение. В наивысшей точке нижней огибающей пересекаются прямые w_4 и w_5 (рис. 3), при этом w_4 имеет положительный наклон, а w_5 — отрицательный. Составим уравнение:

$q_k = q, \quad q_l = 1-q$ или $7q = 6$.

Отсюда находим

$q_{opt} = \frac{6}{7}$

Таким образом, цена игры и оптимальная стратегия игрока B равны

$$
\nu = \frac{5}{7}; \quad p_{opt} = \left(0;0;\frac{6}{7};\frac{1}{7};0\right).
$$

Для решения игры $2 \times n$ (табл. 8) также может быть применен графический метод.

Таблица 8

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>Вероятности использования чистых стратегий игроком A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>a_{11}</td>
<td>a_{12}</td>
<td>p_1</td>
</tr>
<tr>
<td>A_2</td>
<td>a_{21}</td>
<td>a_{22}</td>
<td>p_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A_i</td>
<td>a_{i1}</td>
<td>a_{i2}</td>
<td>p_i</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A_m</td>
<td>a_{m1}</td>
<td>a_{m2}</td>
<td>p_m</td>
</tr>
</tbody>
</table>

Эта игра не имеет седловой точки. Согласно теореме 2 имеем

$$
\nu = \min_{1 \leq i \leq m} \sum_{k=1}^{m} a_{ik} p_{k, opt} = \max_{q \in [0,1]} \left(a_{11} q_{opt} + a_{22} (1 - q_{opt})\right) = \min_{q \in [0,1]} \left(a_{11} + a_{22} (1 - q)\right).
$$

(4.18)
Графиком функции
\[\min_{i,j} (a_{ij}q + a_{ij}(1-q)) \] (4.19)
является верхняя огибающая семейства прямых (15.20)
\[w_i = a_{ij}q + a_{ij}(1-q) = (a_{ij} - a_{ij}q + a_{ij}) \] (4.20)
соответствующих чистым стратегиям игрока \(A \) (рис. 15.5).

Абсцисса нижней точки верхней огибающей семейства прямых (4.20) является оптимальной стратегией игрока \(B \):

\[p_{opt} = p_{opt} (p_{opt} - (1-p_{opt})) \]

а ордината – ценой игры \(v \).

Отыскание оптимальной смешанной стратегии игрока \(A \) проводится по той же схеме, которая позволяет находить оптимальную смешанную стратегию игрока \(B \) в игре \(2 \times n \).

Пусть в самой нижней точке верхней огибающей пересекаются прямые \(w_i \) и \(w_j \), при этом прямая \(w_i \) имеет отрицательный наклон, а прямая \(w_j \) — положительный. Оптимальная смешанная стратегия игрока \(A \) получается, если положить

\[p_i = p, p_j = 1-p, p_k = 0 \] при \(t \neq i, j \),

где \(p \) находят из уравнения

\[a_{ij}p + a_{ij}(1-p) = a_{ij}p + a_{ij}(1-p) \]

▲Пример 6. (локальный конфликт). Рассмотрим войну между двумя государствами \(A \) и \(B \), которая ведется в течение 30 дней.

Для бомбардировки моста, принадлежащего стране \(B \), страна \(A \) использует два имеющихся у нее самолета. Разрушенный мост восстанавливается в течение суток, а каждый самолет совершает один полет по одному из двух возможных маршрутов, соединяющих эти страны. У страны \(B \) есть два зенитных орудия, при помощи которых можно сбивать самолеты страны \(A \). Если самолет сбьют, то страна \(A \) закупает новый самолет в течение суток у некоторой третьей страны.

Страна \(A \) может посылать самолеты либо по одному маршруту, либо по разным.

Страна \(B \) может поместить обе зенитки либо на одном маршруте, либо по одной зенитке на каждом маршруте.

Если один самолет летит по маршруту, на котором расположена одна зенитка, то этот самолет будет сбит.

Если два самолета летят по маршруту, на котором расположены две зенитки, то оба самолета будут сбиты.

Если два самолета летят по маршруту, на котором расположена одна зенитка, то сбит будет только один самолет.

Если самолет доберется до цели, то мост будет уничтожен.

Таким образом, у каждой из стран есть две стратегии:

- \(A_1 \) — послать самолеты по разным маршрутам;
- \(A_2 \) — послать самолеты по одному маршруту;
- \(B_1 \) — поместить зенитки на разных маршрутах;
- \(B_2 \) — поместить зенитки на одном маршруте.

Если страна \(A \) выбирает стратегию \(A_1 \), а страна \(B \) — стратегию \(B_1 \), то самолеты будут сбиты, т.е. вероятность разрушения моста равна нулю.

Если страна \(A \) выбирает стратегию \(A_2 \), а страна \(B \) — стратегию \(B_1 \), то
хотя бы один самолет достигнет цели, т.е. вероятность разрушения моста равна единице. Если страна А выберет стратегию 1, а страна В — стратегию 2, то хотя бы один самолет достигнет цели, т.е. вероятность разрушения моста равна единице. Если страна А выберет стратегию 2, а страна В — стратегию 1, то вероятность достижения цели равна 0,5, т.е. вероятность разрушения моста равна 0,5. Найти решение этой игры.

Решение. Матрица игры имеет вид

$$C = \begin{pmatrix} 0 & 1.0 \\ 1 & 0.5 \end{pmatrix}$$

Решим задачу графическим методом. Проведем анализ игры на наличие седловой точки. Нижняя цена игры равна 0,5, верхняя равна 1. Седловой точки нет. Решение надо искать в смешанных стратегиях.

Построим график нижней огибающей (4.16). Предварительно запишем уравнения прямых (4.17):

$$w_1 = 0 \cdot p + (1 - p) = -p + 1$$
$$w_2 = p + 0.5(1 - p) = 0.5p + 0.5$$

Графики этих прямых, построенных в системе координат рOw, представлены рис. 7. Нижняя огибающая выделена на этом рисунке полужирной ломаной линией. Точка максимума нижней огибающей лежит на пересечении двух прямых. Решая уравнение $-p + 1 = 0.5p + 0.5$, получим

$$p_{opt} = \frac{1}{3}.$$

Цена игры, являющаяся математическим ожиданием выигрыша игрока А, равна

$$v = E(A, p_{opt}, q_{opt}) = w_{k_{opt}} = \frac{1}{3} + 1 = \frac{2}{3}.$$

![График](image.png)

При 15.7

Для определения оптимальной смешанной стратегии игрока В подставим в уравнение

$$a_3q + a_4(1 - q) = a_3q + a_2l(1 - q)$$

соответствующие значения из матрицы игры:

$$0 \cdot q + (1 - q) = q + 0.5 \cdot (1 - q)$$

или 1.5q = 0.5

Отсюда находим $q = \frac{1}{3}.$

Таким образом, цена игры и оптимальные стратегии игроков А и В равны

$$v = \frac{2}{3}; \quad p_{opt} = \left(\frac{1}{3}; \frac{2}{3}\right); \quad q_{opt} = \left(\frac{1}{3}; \frac{2}{3}\right)$$

Это означает, что если страна А будет случайным образом посылать самолеты по разным маршрутам в течение десяти дней из тридцати, а по одному маршруту — в течение двадцати дней, то в среднем она будет иметь 66,7% удачных вылетов. Если страна В будет случайным образом помещать зенитки по разным маршрутам в течение десяти дней из тридцати, а по одному маршруту — в течение двадцати дней, то в среднем она не позволит бомбить мост чаще, чем в 66,7% случаев.

110
6.5 Правило доминирования

Правило доминирования позволяет уменьшить размеры платежной матрицы игры. Оно основа-но на отбрасывании тех чистых стратегий платежной матрицы, которые не вносят никакого вклада в искомые оптимальные смешанные стратегии. Отбрасывание подобных стратегий позволяет заменить первоначальную матрицу на матрицу меньших размеров.

Одна из возможностей снижения размеров матрицы заключается в сравнении ее строк и столбцов.

Считают, что i-я строка матрицы не больше ее j-й строки, если одновременно выполняются неравенства

\[a_{i1} \leq a_{j1}, \quad a_{i2} \leq a_{j2}, \ldots, a_{in} \leq a_{jn} \]

В этом случае i-я строка называется доминируемой, а j-я строка — доминирующей. При этом говорят, что стратегия \(A_i \), игрока A доминирует стратегию \(A_j \). Считают, что игрок A поступит разумно, если будет избегать стратегий, которым в матрице игры соответствуют доминируемые строки.

Считают также, что k-й столбец матрицы не меньше его l-го столбца, если одновременно выполняются неравенства

\[a_{ik} \leq a_{il}, \quad a_{i2} \leq a_{l2}, \ldots, a_{ik} \leq a_{lk} \]

В этом случае k-й столбец называется доминируемым, а l-й столбец — доминирующим. При этом говорят, что стратегия \(B_k \), игрока B доминирует стратегию \(B_l \). Считают, что игрок B поступит разумно, если будет избегать стратегий, которым в матрице игры отвечают доминируемые столбы.

Если в матрице игры одна из строк (один из столбцов) доминирует другую строку (другой столбец), то число строк (столбцов) в этой матрице можно уменьшить путем отбрасывания доминируемой строки (доминируемого столба).

Оптимальные смешанные стратегии в игре с матрицей, полученной усечением исходной за счет доминируемых строк и столбцов, дадут оптимальное решение в исходной игре. Вероятности, соответствующие доминируемым чистым стратегиям, следует взять равными нулю.

При отбрасывании доминируемых строк и столбцов некоторые из оптимальных стратегий могут быть потеряны. Однако цена игры не изменится, и по усеченной матрице может быть найдена хотя бы одна пара оптимальных смешанных стратегий.

Пример 7. Заменить исходную матрицу

\[
\begin{pmatrix}
-1 & 0 & 2 & 1 \\
-2 & 0 & 1 & 0 \\
2 & 1 & -1 & -2 \\
-1 & 0 & 2 & 1
\end{pmatrix}
\]

на матрицу выигрышей меньших размеров и решить игру.

Решение. Первая строка совпадает с последней, т.е. они дублируют друг друга. Поэтому одну из этих строк можно вычеркнуть. В результате получим

\[
\begin{pmatrix}
-1 & 0 & 2 & 1 \\
-2 & 0 & 1 & 0 \\
2 & -1 & -2
\end{pmatrix}
\]

Первая строка доминирует вторую, поэтому вторую строку можно отбросить. Тогда матрица примет вид

\[
\begin{pmatrix}
-1 & 0 & 2 & 1 \\
2 & -1 & -2
\end{pmatrix}
\]
В этой матрице четвертый столбец доминирует третий. В результате получим
\[
\begin{pmatrix}
-1 & 0 & 1 \\
2 & 1 & -2 \\
\end{pmatrix}
\]
Седловой точки в этой игре нет. Решение будем искать в смешанных стратегиях графическим методом. Уравнения рассматриваемых прямых имеют вид:
w 1 = -p + 2(1 - p) = -3p + 2
w 2 = 0 p +(1 – p) = -p +1
По нижней огибающей оптимальное значение p находим из пересечения прямых w1 и w2.
Решив уравнение
-3p + 2 = 3p – 2
получаем оптимальное решение p (opt) = 2:3.
В этом случае цена игры (- 2:3 +2) = 0.
Таким образом, можно указать следующую последовательность действий при использовании правила доминирования:
- проверить наличие равновесия в чистых стратегиях, указать оптимальные стратегии игроков и цену игры, если это возможно;
- при отсутствии равновесия провести поиск доминирующих стратегий и усечение матрицы;
- найти цену игры и оптимальные смешанные стратегии.
4.6. Решение игр с помощью линейного программирования
Имеет место теорема, позволяющая применять идеи линейного программирования при решении задач теории игр:

Теорема. Пусть \(p_{opt} \) и \(q_{opt} \) - оптимальные смешанные стратегии игроков A и B в игре \(m \times n \) с матрицей \((a_{ik}) \) и ценой игры \(v \). Тогда \(p_{opt} \) и \(q_{opt} \) будут оптимальными в игре с матрицей \((ba_{ik}+c) \) и ценой игры \(v' = bv + c \), где \(b > 0 \).

Пусть имеется игра \(m \times n \), причем \(a \neq \beta \), а все элементы платежной матрицы \(a_{ik} \geq 0 \). Последнего условия всегда можно добиться, используя теорему 3, прибавив, например, ко всем элементам платежной матрицы некоторое положительное число с. В этом случае и цена игры \(v > 0 \).

Найдем сначала оптимальную смешанную стратегию игрока \(q_{opt} \). Применяя ее, игрок B проиграет не более \(v \) при любой чистой стратегии A1 игрока A, т.е. равенство теоремы 2 можно записать в виде неравенства:

\[
\sum_{k=1}^{n} a_{ik} q_k \leq v, \quad i = 1, 2, ..., m \quad (4.21)
\]

Разделив на \(v \), получим:

\[
\sum_{k=1}^{n} \frac{a_{ik}}{v} \leq 1, \quad i = 1, 2, ..., m \quad (4.22)
\]

Введем новые переменные

\[
y_k = \frac{q_k}{v}, \quad k=1, 2, ..., n, \quad (4.23)
\]

Получим

\[
\sum_{k=1}^{n} a_{ik} y_k \leq 1, \quad i=1, 2, ..., m, \quad (4.24)
\]

\[
y_k \geq 0 \quad k=1, 2, ..., n. \quad (4.25)
\]

112
Кроме того, y_k удовлетворяет условию

$$
\sum_{k=1}^{n} y_k = \sum_{k=1}^{n} q_k = \frac{1}{v} \sum_{k=1}^{n} q_k = \frac{1}{v}
$$

(4.26)

Игрок B стремится сделать свой проигрыш v как можно меньше, т.е. как можно больше величину

$$
\varphi = \sum_{k=1}^{n} y_k = \frac{1}{v}
$$

(4.27)

Учитывая сказанное, приходим к следующей задаче линейного программирования:

$$
\varphi = \sum_{k=1}^{n} y_k \rightarrow \max (4.28)
$$

при условиях

$$
\sum_{k=1}^{n} \alpha_{ik} q_k \leq v, \quad i = 1, 2, ..., m
$$

(4.29)

$$
y_k \geq 0 k=1, 2, ..., n.
$$

(4.30)

Решая эту задачу, находим оптимальное решение - вектор $y_{opt} = (y_{1,opt}, y_{2,opt}, ..., y_{n,opt})$ и максимально-значение целевой функции $\varphi_{opt} = \varphi_{max}$, а затем, используя формулы (4.27) и (4.23), цену игры и компоненты оптимальной смешанной стратегии:

$$
v = \frac{1}{\varphi_{max}}, \quad q_{k,opt} = v y_{k,opt}, \quad k = 1, 2, ..., n
$$

(4.31)

Чтобы найти оптимальную стратегию игрока A: p_{opt}, следует решить двойственную задачу линейного программирования:

$$
\psi = \sum_{i=1}^{m} x_i \rightarrow \min (4.32)
$$

при условиях

$$
\sum_{i=1}^{m} \alpha_{ik} x_i \geq 1, \quad k = 1, 2, ..., n
$$

(4.33)

$$
x_i \geq 0, \quad i = 1, 2, ..., m.
$$

(4.34)

Обратившись к стандартным методам решения задач линейного программирования (см. симплекс-метод и М-метод), находим оптимальное решение - оптимальный вектор $x_{opt} = (x_{1,opt}, x_{2,opt}, ..., x_{n,opt})$ и минимальное значение целевой функции $\psi_{opt} = \psi_{min}$, а затем цену игры и компоненты оптимальной смешанной стратегии:

$$
v = \frac{1}{\psi_{min}}, \quad p_{i,opt} = v x_{i,opt}, \quad i = 1, 2, ..., m
$$

(4.35)

Пример 8. Фирмы A и B производят однородный сезонный товар, пользующийся спросом n единиц времени. Доход от продажи товара в единицу времени составляет C ден. ед. Фирма B, будучи более состоятельной, в ходе конкурентной борьбы стремится вытеснить фирму A с рынка сбыта, способствуя своими действиями минимизации ее дохода, не считаясь при этом с временными потерями своего дохода в надежде наверстать упущенное в будущем. Действующее законодательство не позволяет прибегать к демпинговым ценам. Единственным допустимым способом достижения своих целей для фирм A и B остается повышение качества товара и выбор момента времени поставки его на рынок. Уровень спроса на товар зависит от его качества, и в данный момент реализуется тот товар, качество которого выше. Повышение же качества требует дополнительных затрат времени на совершенствование технологии его
изготовления и переналадки оборудования. В связи с этим будем предполагать, что качество товара тем выше, чем позже он поступает на рынок.

Придать описанной ситуации игровую схему и дать рекомендации фирмам A и B по оптимальным срокам поставки товара на рынок, обеспечивающим фирме A наибольший средний доход, а фирме B — наименьшие потери.

Решение. Фирма A выбирает некий момент времени поставки товара на рынок (обозначим его через i) с целью максимизировать свой доход. Фирма B выбирает момент времени к поставки товара на рынок с целью минимизировать доход фирмы A.

Функцию выигрышей игрока A можно записать в виде

$$a_d = \begin{cases} C(k-i), & i < k; \\ 0.5C(n-i+1), & i = k; \\ C(n-i), & i > k. \end{cases} (4.36)$$

Действительно, если $i < k$, то фирма A, не имея конкурентов в течение $k-i$ единиц времени, получит за этот период доход $C(k-i)$ ден.ед. В момент k на рынке появляется товар фирмы B более высокого качества, и фирма A теряет рынок (первых строка в (36)).

Если $i=k$, то товар фирм A и B имеет одинаковое качество и реализуется с одинаковым спросом.

Поэтому доходы фирмы A и B за период времени $n-i+1$ равны друг другу и вычисляются по формуле $0.5C(n-i+1)$ (вторая строка в (4.36)).

Если $i > k$, то фирма A, предлагая товар более высокого качества, в течение $n-i+1$ единиц времени единолично получит за этот период доход, равный $C(n-i+1)$ ден.ед. (третья строка в (4.36)).

По формулам (4.36) можно построить платежную матрицу. Например, для количества единиц времени $n = 5$ платежная матрица имеет вид, представленный в табл.10.

Проведем анализ игры на наличие седловой точки. Нижняя цена игры равна C, верхняя цена $2C$. Седловой точки нет. Решение надо искать в смешанных стратегиях.

Таблица 10

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>2,5C</td>
<td>C</td>
<td>2C</td>
<td>3C</td>
<td>4C</td>
<td>p_1</td>
</tr>
<tr>
<td>A_2</td>
<td>4C</td>
<td>2C</td>
<td>C</td>
<td>2C</td>
<td>3C</td>
<td>p_2</td>
</tr>
<tr>
<td>A_3</td>
<td>3C</td>
<td>2C</td>
<td>1,5C</td>
<td>C</td>
<td>2C</td>
<td>p_3</td>
</tr>
<tr>
<td>A_4</td>
<td>2C</td>
<td>2C</td>
<td>2C</td>
<td>C</td>
<td>C</td>
<td>p_4</td>
</tr>
<tr>
<td>A_5</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>0,5C</td>
<td>p_5</td>
</tr>
<tr>
<td>q_k</td>
<td>q_1</td>
<td>q_2</td>
<td>q_3</td>
<td>q_4</td>
<td>q_5</td>
<td></td>
</tr>
</tbody>
</table>

Упростим платежную матрицу, умножив все элементы на $\frac{1}{C}$. В результате получим матрицу, представленную в табл. 11.

Таблица 11

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>2,5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>p_1</td>
</tr>
<tr>
<td>A_2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>p_2</td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
<td>2</td>
<td>1,5</td>
<td>1</td>
<td>2</td>
<td>p_3</td>
</tr>
<tr>
<td>A_4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>p_4</td>
</tr>
<tr>
<td>A_5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,5</td>
<td>p_5</td>
</tr>
<tr>
<td>q_k</td>
<td>q_1</td>
<td>q_2</td>
<td>q_3</td>
<td>q_4</td>
<td>q_5</td>
<td></td>
</tr>
</tbody>
</table>

В этой матрице первая строка доминирует пятую. Опускаем доминируемую строку, получим матрицу, представленную в табл. 12.
Таблица 12

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>2,5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>p_1</td>
</tr>
<tr>
<td>A_2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>p_2</td>
</tr>
<tr>
<td>A_3</td>
<td>3</td>
<td>2</td>
<td>1,5</td>
<td>1</td>
<td>2</td>
<td>p_3</td>
</tr>
<tr>
<td>A_4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>p_4</td>
</tr>
<tr>
<td>q_k</td>
<td>q_1</td>
<td>q_2</td>
<td>q_3</td>
<td>q_4</td>
<td>q_5</td>
<td></td>
</tr>
</tbody>
</table>

В полученной матрице элементы второго столбца доминируют первый, а четвертый столбец доминирует пятый. Поэтому первый и пятый столбцы можно опустить. Тогда получим матрицу (табл. 13).

Таблица 13

<table>
<thead>
<tr>
<th></th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>p_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>p_1</td>
</tr>
<tr>
<td>A_2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>p_2</td>
</tr>
<tr>
<td>A_3</td>
<td>2</td>
<td>1,5</td>
<td>1</td>
<td>p_3</td>
</tr>
<tr>
<td>A_4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>p_4</td>
</tr>
<tr>
<td>q_k</td>
<td>q_1</td>
<td>q_2</td>
<td>q_3</td>
<td>q_4</td>
</tr>
</tbody>
</table>

В результате выполненных преобразований установлено, что в оптимальных смешанных стратегиях $p_{5,\text{opt}} = 0$, $q_{1,\text{opt}} = 0$ и $p_{5,\text{opt}} = 0$, а цена $\nu = C \cdot \nu'$, где ν' - цена игры с упрощенной матрицей табл. 13.

По табл. 13. составляем задачу линейного программирования (4.32)-(4.34):

$$
\psi = x_1 + x_2 + x_3 + x_4 \rightarrow \min
$$

при условиях

$$
\begin{cases}
 x_1 + 2x_2 + 3x_3 + 2x_4 \geq 1, \\
 2x_1 + x_2 + 1,5x_3 + 2x_4 \geq 1, \\
 3x_1 + 2x_2 + x_3 + x_4 \geq 1, \\
 x_1 \geq 0; x_2 \geq 0; x_3 \geq 0; x_4 \geq 0
\end{cases} \quad (4.37)
$$

Если решить эту задачу М-методом, то оптимальное решение имеет вид

$$
x_{1,\text{opt}} = \frac{3}{13}, \quad x_{2,\text{opt}} = 0, \quad x_{3,\text{opt}} = \frac{2}{13}, \quad x_{4,\text{opt}} = \frac{2}{13}
$$

Минимальным значением целевой функции является величина $\psi = \frac{7}{13}$.

Цена игры и компоненты оптимальной смешанной стратегии фирмы A определяются соотношениями (4.35):

$$
\nu = \frac{1}{\psi_{\text{min}}} = \frac{13}{7}; \quad p_{1,\text{opt}} = \nu x_{1,\text{opt}} = \frac{13}{7} \cdot \frac{3}{13} = \frac{3}{7}; \quad p_{2,\text{opt}} = 0.;
$$

$$
p_{3,\text{opt}} = \frac{13}{7} \cdot \frac{2}{13} = \frac{2}{7}; \quad p_{4,\text{opt}} = \frac{13}{7} \cdot \frac{2}{13} = \frac{2}{7}; \quad p_{5,\text{opt}} = 0. \quad (4.38)
$$

$$
y_2 = \frac{2}{13}; \quad y_3 = \frac{4}{13}; \quad y_4 = \frac{1}{13}
$$

Оптимальная смешанная стратегия игрока B по формуле с учетом полученных выше результатов

$$
q_{1,\text{opt}} = \nu' y_{k,\text{opt}}, \quad k = 1, 2, ..., n,
$$

$$
q_{1,\text{opt}} = 0; \quad q_{2,\text{opt}} = \frac{13}{7} \cdot \frac{2}{13} = \frac{2}{7}; \quad q_{3,\text{opt}} = \frac{4}{7}; \quad q_{4,\text{opt}} = \frac{1}{13}; \quad q_{5,\text{opt}} = 0
$$

115
Фирма A должна поставлять свой товар на рынок в первую, вторую, третье и четвертую единицы времени с вероятностями \(\frac{3}{7}; \frac{2}{7}; \frac{2}{7} \) соответственно и совсем не поставлять во вторую и пятую единицы времени. В этом случае ее ожидаемый доход будет равен \(\frac{13}{7} \) и. Фирме B следует поставлять свою продукцию на рынок во вторую, третью и четвертую единицы времени с вероятностями \(\frac{2}{7}; \frac{4}{7}; \frac{1}{7} \) соответственно и совсем не поставлять в первую и пятую единицы времени. В этом случае ее ожидаемые потери не превысят \(\frac{13}{7} \).

6.6 Игры с природой

Определение:

Игра с природой — это парная матричная игра, в которой сознательный игрок A (статистик) выступает против участника, называемого природой, который совершенно безразличен к результату игры.

При решении таких игр достаточно найти оптимальное решение только для статистика A, так как природа в рекомендациях не нуждается и будет развязываться по своим законам вне зависимости от пожеланий игрока.

Пусть статистик использует стратегии A₁, A₂, ..., Aₘ, а природа обладает стратегиями П₁, П₂, ..., Пₙ. Если статистик имеет возможность оценить последствия применения каждой своей чистой стратегии Aᵢ в зависимости от любой стратегии природы Пₖ, то игру можно задать платежной матрицей (табл. 14).

В последнем столбце табл. 18 приведены минимально возможные выигрыши статистика aᵢ при стратегии Aᵢ, а в последней строке — максимально возможный выигрыш статистика βₖ при состоянии Пₖ.

<table>
<thead>
<tr>
<th></th>
<th>П₁</th>
<th>П₂</th>
<th>...</th>
<th>Пₙ</th>
<th>aᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>a₁₁</td>
<td>a₁₂</td>
<td>...</td>
<td>a₁ₙ</td>
<td>a₁</td>
</tr>
<tr>
<td>A₂</td>
<td>a₂₁</td>
<td>a₂₂</td>
<td>...</td>
<td>a₂ₙ</td>
<td>a₂</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Aₘ</td>
<td>aₘ₁</td>
<td>aₘ₂</td>
<td>...</td>
<td>aₘₙ</td>
<td>aₘ</td>
</tr>
<tr>
<td>βₖ</td>
<td>β₁</td>
<td>β₂</td>
<td>...</td>
<td>βₙ</td>
<td></td>
</tr>
</tbody>
</table>

Помимо матрицы платежей (aᵢₖ), приведенной в табл. 14, для анализа игры с природой используется также матрица рисков статистика.

Определение

Риском статистика rᵢₖ называют разность между максимальным выигрышем maxₖ aᵢₖ, который он мог бы получить, достоверно зная, что природа реализует состояние Пₖ, и тем выигрышем aᵢₖ, который он получит, используя стратегию Aᵢ, не зная, какое состояние Пₖ природа реализует:

\[rᵢₖ = \maxₖ aᵢₖ - aᵢₖ = βᵦₖ - aᵢₖ \geq 0 \quad (4.39) \]

Для анализа игры с природой часто используются средние значения рисков \(rᵢ \) и средние значения выигрыша \(aᵢ \), которые вычисляются по формулам:

\[rᵢ = \sumₖ rᵢₖ qₖ, \quad \text{где } i = 1, 2, ..., m; \quad (4.40) \]
$$a_i = \sum_{k=1}^{n} a_{ik} q_k, \quad \text{где } i = 1, 2, ..., m; \quad (4.41)$$

Здесь q_k — вероятность наступления события Π_k. Таким образом, матрица рисков статистика имеет вид (табл. 15).

Таблица 15

<table>
<thead>
<tr>
<th>Π_j</th>
<th>Π_2</th>
<th>...</th>
<th>Π_n</th>
<th>r_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>r_{11}</td>
<td>r_{12}</td>
<td>...</td>
<td>r_{1n}</td>
</tr>
<tr>
<td>A_2</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>...</td>
<td>r_{2n}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A_m</td>
<td>r_{m1}</td>
<td>a_{m2}</td>
<td>...</td>
<td>r_{mn}</td>
</tr>
<tr>
<td>q_k</td>
<td>q_1</td>
<td>q_2</td>
<td>...</td>
<td>q_n</td>
</tr>
</tbody>
</table>

С учетом (4.41) табл. 14 можно записывать также в виде:

Таблица 16

<table>
<thead>
<tr>
<th>Π_j</th>
<th>Π_2</th>
<th>...</th>
<th>Π_n</th>
<th>a_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>a_{11}</td>
<td>a_{12}</td>
<td>...</td>
<td>a_{1n}</td>
</tr>
<tr>
<td>A_2</td>
<td>a_{21}</td>
<td>a_{22}</td>
<td>...</td>
<td>a_{2n}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A_m</td>
<td>a_{m1}</td>
<td>a_{m2}</td>
<td>...</td>
<td>a_{mn}</td>
</tr>
<tr>
<td>q_k</td>
<td>q_1</td>
<td>q_2</td>
<td>...</td>
<td>q_n</td>
</tr>
</tbody>
</table>

Перед тем как перейти к выбору оптимальной стратегии, нужно сравнить нижнюю и верхнюю чистые цены. В случае неравенства этих цен при возможности упрощают платежную матрицу, учитывая доминирование стратегий статистика (применение принципа доминирования только к строкам платежной матрицы). Отбрасывая те или иные состояния природы нельзя, так как она может реализовать свои состояния независимо от того, выгодны они статистике или нет (нельзя отбрасывать столбцы платежной матрицы).

После упрощения платежной матрицы можно перейти к матрице рисков.

При поиске оптимальных решений обычно используют различные критерии, дающие некоторую схему принятия решений. Рассмотрим некоторые из них.

Критерий Байеса. При использовании критерия Байеса статистику известны вероятности q_k наступления события Π_k. Обычно вероятности q_i определяются путем проведения экспериментов. Такие вероятности называются апостериорными. В качестве оптимальной по критерию Байеса принимается чистая стратегия A_i, при которой средний выигрыш статистика a_i становится максимальным.

Критерий Лапласа. Критерий Лапласа отличается от критерия Байеса тем, что апостериорные вероятности неизвестны. Тогда их принимают равными и рассчитывают по формуле

$$q_k = \frac{1}{n}$$

Критерий Сэвиджа. Критерий рассчитывается по матрице рисков. Он является критерием крайнего пессимизма, т.е. статистик исходит из предположения, что природа действует против него наихудшим образом. Критерий Сэвиджа рекомендуется выбирать в качестве оптимальной ту чистую стратегию A_i, при которой максимальный риск является минимальным. Такой риск называется минимаксом и рассчитывается по формуле $r = \min_{i} \max_{k} r_{ik}$.

Критерий Вальда. Как и критерий Сэвиджа, критерий Вальда является критерием крайнего пессимизма. Поэтому статистик выбирает такую чистую стратегию A_i, при которой
наименьший выигрыш будет максимальным. Этот выигрыш называется максимальном и вычисляется по формуле \(\alpha = \max_i \min_k a_{ik} \).

Критерий Гурвица. Этот критерий является критерием пессимизма-оптимизма и рекомендуется применять нечто среднее. В этом случае статистик выбирает такую чистую стратегию \(A_i \), для которой справедливо условие \(\max_k (\gamma \min_k a_{ik}) + (1-\gamma) \max_k a_{ik} \), где \(\gamma = 0 \div 1 \) выбирается из субъективных соображений. При \(\gamma = 1 \) критерий Гурвица преобразуется в критерий Вальда.

Пример 9. Создается центр по ремонту бытовых приборов. Доля простоты принимается, что поток заявок на ремонт выражается числами 2, 4, 6 и 8 тыс. заявок в год. Из опыта известно, что прибыль от ремонта одного прибора составляет 9 ден. ед. в год. Потери, вызванные отказом в ремонте ввиду недостатка мощностей, — 5 ден. ед. Убытки от простоя специалистов и оборудования при отсутствии заявок — 6 ден. ед. за каждую заявку.

Дать информацию о мощности создаваемого центра, используя приведенные критерии.

Решение. В качестве игрока \(A \) здесь выступает орган, принимающий решение о мощности создаваемого центра. Егo чистыми стратегиями являются:

- Центр мощностью 2 тыс. приборов в год;
- Центр мощностью 4 тыс. приборов в год;
- Центр мощностью 6 тыс. приборов в год;
- Центр мощностью 8 тыс. приборов в год.

Вторым игроком выступает совокупность всех обстоятельств, в которых формируется поток заявок на ремонт, т.е. природа \(P \). Природа может реализовать любое из четырех состояний:

\(P_1 \) — поток составит 2 тыс. приборов в год;
\(P_2 \) — поток составит 4 тыс. приборов в год;
\(P_3 \) — поток составит 6 тыс. приборов в год;
\(P_4 \) — поток составит 8 тыс. приборов в год.

Вычислим выигрыши \(a_{ik} \) игрока \(A \) при любых сочетаниях обстоятельств \((A_i, P_k)\). Найболее благоприятными будут ситуации, когда количество поступивших заявок совпадает с возможностями центра.

Для комбинации \((A_{11}, P_1)\) прибыль составит \(a_{11} = 2 \cdot 9 = 18 \) тыс. ден. ед., для комбинации \((A_{22}, P_2)\) имеем \(a_{22} = 4 \cdot 9 = 36 \) тыс. ден. ед. и т.д.

Для случая \((A_{11}, P_2)\) в ателье можно отремонтировать 2 тыс. приборов, а заявка поступила 4 тыс. Потери при этом составят 2,5 = 10 тыс. ден. ед., а общая прибыль \(a_{12} = 2 \cdot 9 - 2 \cdot 5 = 8 \) тыс. ден. ед.

Для случая \((A_{22}, P_3)\) в ателье можно отремонтировать 4 тыс., а заявка поступило 2 тыс. Потери при этом составят 2,6 = 12 тыс. ден. ед., а общий прибыль \(a_{23} = 18 - 12 = 6 \) тыс. ден. ед.

Аналогично находятся другие элементы платежной матрицы. Результаты расчетов представлены в табл.21.

Из табл. 21 следует, что нижняя чистая цена игры

\[\alpha = \max_i \min_k a_{ik} = 6 , \]

а верхняя чистая цена игры

\[\beta = \min_i \max_k a_{ik} = 18 . \]

Так как \(\alpha \neq \beta \), то игра не содержит седловой точки. Доминирующих стратегий у статистика нет.

Критерий Байеса. Пусть известны вероятности \(q_k \) состояния природы \(P_k \). В табл. 21 эти вероятности обозначены как \(q_k^6 \). По формуле (4.47) находим значения средних выигрышей \(q_k^6 \). Эти значения приведены в седьмом столбце табл. 21. В качестве оптимальной по критерiu Байеса принимается чистая стратегия \(A_3 \) (открыть ателье на 6 тыс. ремонтов в год), при которой средний выигрыш статистика является наибольшим: \(q_k^6 \approx 29,5 \).

Таблица 21
П_1 (2) П_2 (4) П_3 (6) П_4 (8) \alpha_i \, q_i^{-\beta} \, q_i^{-\varrho} \, 0,8\alpha_i \, \delta_i \, 0,2\delta_i \, h_i
| \hline
A_1 (2)	18	8	-2	-12	-12	3,5	3	-9,6	18	3,6	-6
A_2 (4)	6	36	26	16	6	23,5	21	4,8	36	7,2	12
A_3 (6)	-6	24	54	44	-6	29,5	29	-4,8	54	10,8	6
A_4 (8)	-18	12	42	72	-18	25,5	27	-14,4	72	14,4	0

\beta_k 18 | 36 | 54 | 72
q_k^\beta 0,2 | 0,35 | 0,25 | 0,2
q_k^\varrho 0,25 | 0,35 | 0,25 | 0,25

\alpha_i = \min_k a_i ; \quad \delta_i = \max_k a_i ; \quad h_i = \gamma \min_k a_i + (1 - \gamma) \max_k a_i

Критерий Лапласа. По этому критерию вероятности принимают равными и рассчитывают по формуле

\[q_i^{-\varrho} = \frac{1}{n} = \frac{1}{4} = 0,25 \]

В качестве оптимальной по критерию Лапласа также принимается чистая стратегия \(A_3 \), при которой средний выигрыш статистика является наибольшим: \(q_i^{-\varrho} = 29 \).

Критерий Сэвиджа. Для анализа игры по этому методу построим матрицу рисков. Для расчетов используются формулы (4.45), (4.46). Результаты расчетов представлены в табл. 22. Как следует из табл. 22, минимальный из всех максимальных рисков равен \(r = \min_k \max_i r_{ik} = 28 \).

Этот риск соответствует чистой стратегии \(A_3 \) (открыть центр на 6 тыс. ремонтов в год).

Таблица 22

| \hline
| П_1 | П_2 | П_3 | П_4 | max r_{ik} |
| \hline
A_1	0	28	56	84	84
A_2	12	0	28	56	56
A_3	24	12	0	28	28
A_4	36	24	12	0	36

Критерий Вальда. Из табл. 21 видно, что нижняя чистая цена игры \(\alpha = \max_k \min_i a_{ik} = 6 \). Эта цена соответствует чистой стратегии \(A_2 \) (открыть центр на 4 тыс. ремонтов в год).

Критерий Гурвица. Положим \(\gamma = 0,8 \). Рассчитываем по формуле \(\delta_i = \max_k a_{ik} \) (см. столбец 10 табл. 21). Затем, используя данные столбцов 6 и 10 табл. 21, проводим расчет по формуле \(h_i = 0,8 \min_k a_{ik} + 0,2 \max_i a_{ik} \)

Результат представлен в столбце 12 табл. 21. Значение \(\max_i \left(\gamma \min_k a_{ik} + (1 - \gamma) \max_k a_{ik} \right) = 12 \) и соответствует стратегии \(A_2 \) (открыть центр на 4 тыс. ремонтов в год).
Задачи

1.1 2 2-1
3-1 2 4
2-2 3-1
4 3 1 2

А) Найти нижнюю цену игры
Б) Найти верхнюю цену игры

2.1 2 1 3 7
3-5 -1 6-2
3 2 1 4 2
-1 7 -2-3 4

А) Найти нижнюю и верхнюю цены игры
Б) Найти седловую точку

3.2 4 2 2
3-1 2 1
3 1 4 1

А) Найти нижнюю и верхнюю цены игры
Б) Найти седловую точку

4. Какая стратегия игры называется смешанной?
5. Сформулировать теорему Неймана.
Найти решение матричной игры графическим методом:

6.6 4 3 1-1 0
-2-1 1 0 5 4

7.3-1
-1 3
1 0

8.0 1
10,5

9. -1 1-1 2
0-1 2-2

10. 1 4
3 -2
0 5

Используя правило доминирования, снизить размеры матрицы:

11. -2 1 0 1
-4 0-2-1
3 1 1 2
-2 1 0 1
Снизить размер матрицы по правилу доминирования и найти цену игры и оптимальные смешанные стратегии:

\[
\begin{pmatrix}
13. & -1 & 0 & 2 & 1 \\
-2 & -1 & 1 & 0 \\
3 & 2 & 2 & 1 \\
-1 & 0 & 2 & 1 \\
\end{pmatrix}
\]

Свести к задаче линейного программирования:

\[
\begin{pmatrix}
15. & 1 & 2 & 1 \\
0 & -1 & 3 \\
2 & 4 & 2 \\
16. & 1 & 1 & 0 \\
-1 & 2 & 2 \\
3 & 1 & 2 \\
17. & 4 & 2 & 2 \\
2 & 5 & 0 \\
0 & 2 & 5 \\
\end{pmatrix}
\]

18. Дать определение игры с природой. Найти стратегию, оптимальную по критерию Байеса:

19.

<table>
<thead>
<tr>
<th>Пi</th>
<th>0,1</th>
<th>0,3</th>
<th>0,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>2</td>
<td>+1</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>A3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

20.

<table>
<thead>
<tr>
<th>P</th>
<th>0,2</th>
<th>0,5</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A4</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Составить матрицу рисков и выбрать оптимальную стратегию:
7. Марковские цепи

7.1 Марковские цепи с конечным множеством состояний и дискретным временем

Основные понятия

Описание марковской цепи с дискретным временем

Пусть некоторая система, называемая далее цепью, может находиться в одном из состояний конечного (или счетного) множества возможных состояний $E_1, E_2, ..., E_n$.

Переходы из одного состояния в другое могут происходить только в определённые дискретные моменты времени $t=1, 2, 3, ...$

Если система в момент времени t находится в состоянии E_i, то вероятность оказаться в состоянии E_j в момент времени $t+1$ не зависит от t и равна p_{ij}.

Замечание. Случайный процесс называют марковским, если вероятность перехода из любого состояния E_i в любое состояние E_j не зависит от того, как и когда система попала в состояние E_i (т.е. в системе отсутствует последствие). Последнее условие как раз и означает, что цепь марковская.

Переходы цепи в различные состояния удобно изображать с помощью графа состояний. Вершины графа обозначают возможные состояния системы. Стрелка, направленная из вершины E_i в вершину E_j обозначает переход $E_i \rightarrow E_j$. Число, стоящее рядом со стрелкой, обозначает вероятность этого перехода.

Графу системы, содержащему в вершинах, можно поставить в соответствие матрицу, элементами которой являются вероятности переходов.

Матрица переходных вероятностей за 1 шаг

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>E_2</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

В таблице:

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>E_2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>E_3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>E_2</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>E_3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>E_2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E_1</th>
<th>E_2</th>
<th>E_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>E_2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E_3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Задача. Выписать матрицу переходных вероятностей для марковской цепи, заданной графом:

\[
P = \begin{pmatrix}
p_{11} & p_{12} & \cdots & p_{1n} \\
p_{21} & p_{22} & \cdots & p_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n1} & p_{n2} & \cdots & p_{nn}
\end{pmatrix}
\]

Ответ: \[
P = \begin{pmatrix}
0 & 1 & 0 \\
0.4 & 0 & 0.6 \\
0.1 & 0.7 & 0.2
\end{pmatrix}
\]

Свойство матрицы переходных вероятностей:

Сумма чисел в любой строке равна 1

Задача. Алиса и Боб играют матч в настольный теннис. Ставка в каждой партии 10 пенсов. В начале у Алисы есть 30 пенсов, у Боба – 20 пенсов. Вероятность выигрыша партии для Боба равна 0,6, ничьих нет. Нарисовать граф для этой марковской цепи.

Ответ:

Задача. Сейчас цепь находится в состоянии E₃. Найти вероятность оказаться в E₁ через три шага.
Решение.
P_{31}(3 \text{ шага}) = 0,2 \cdot 0,7 \cdot 0,4 + \ldots

Ответ. \ P_{31}(3 \text{ шага}) = 0,2 \cdot 0,7 \cdot 0,4 + 0,2 \cdot 0,2 \cdot 0,1 + 0,1 \cdot 1 \cdot 0,4 + 0,7 \cdot 0,6 \cdot 0,1 = 0,142

Теорема. Матрица переходных вероятностей за m шагов P(m) удовлетворяет соотношению

\[P(m) = P \cdot P \cdot \ldots \cdot P \]

Доказательство. По формуле полной вероятности \[P_{ij}(m+1) = \sum_k P_{ik} P_{kj}(m) \].

Остаётся воспользоваться индукцией.

Задача. В предыдущей задаче найти матрицу переходных вероятностей за 3 шага

Решение:

\[P(3) = P^3 = P^2 \cdot P \]

\[P^2 = P \cdot P = \begin{pmatrix} 0 & 1 & 0 \\ 0,4 & 0 & 0,6 \\ 0,1 & 0,7 & 0,2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0,4 & 0 & 0,6 \\ 0,1 & 0,7 & 0,2 \end{pmatrix} = \ldots \]

\[P^2 = \begin{pmatrix} 0,4 & 0,6 \\ 0,06 & 0,82 & 0,12 \\ 0,3 & 0,24 & 0,46 \end{pmatrix} \]

\[P^3 = P^2 \cdot P = \begin{pmatrix} 0,4 & 0,6 \\ 0,06 & 0,82 & 0,12 \\ 0,3 & 0,24 & 0,46 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0,4 & 0 & 0,6 \\ 0,1 & 0,7 & 0,2 \end{pmatrix} = \ldots \]

\[= \begin{pmatrix} 0,06 & 0,82 & 0,12 \\ 0,34 & 0,144 & 0,516 \\ 0,142 & 0,622 & 0,236 \end{pmatrix} \]

Задача. Сейчас система находится в состоянии \(E_2 \). Найти самое вероятное состояние через 4 шага.
Решение:

\[P(4) = P^4 = P^2 \cdot P^2 \]

\[P^2 = \begin{pmatrix} 0.4 & 0.6 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0.4 & 0.6 \\ 1 & 0 \end{pmatrix} = \cdots = \begin{pmatrix} 0.76 & 0.24 \\ 0.4 & 0.6 \end{pmatrix} \]

\[P^4 = \begin{pmatrix} 0.76 & 0.24 \\ 0.4 & 0.6 \end{pmatrix} \begin{pmatrix} 0.76 & 0.24 \\ 0.4 & 0.6 \end{pmatrix} = \begin{pmatrix} 0.674 & 0.326 \\ 0.544 & 0.456 \end{pmatrix} \]

Ответ. Самое вероятное состояние – \(E_1\).
Вектор вероятностей состояний

\[q = (q_1, q_2, \ldots, q_n) \]

Свойство вектора вероятностей состояний:

| Сумма всех \(q_i\) равна 1 |

Теорема. Вектор вероятностей состояний через \(m\) шагов находится по формуле

\[q(m) = q \cdot P^m \]

Задача. Сейчас все состояния равновероятны. Найти самое вероятное состояние через 3 шага.

Решение:

\[q(0) = (1/3; 1/3; 1/3), q(3) = ? \]

\[q(3 \text{ шага}) = q(0) \cdot P^3 = \begin{pmatrix} 1/3 & 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} 0.06 & 0.82 & 0.12 \\ 0.34 & 0.144 & 0.516 \\ 0.142 & 0.622 & 0.236 \end{pmatrix} = \cdots \]

Ответ. \(q(3 \text{ шага}) = (0.181 \ 0.528 \ 0.291)\)

Эргодические цепи
Понятие эргодичности
Наибольший интерес обычно представляет поведение марковской цепи за большое количество шагов. Это требует возведения матриц в высокие степени. Но есть цепи, для которых ситуация при большом числе шагов напротив, упрощается.

Марковская цепь с дискретным временем называется эргодической (или регулярной), если

\[\lim_{n \to \infty} q(n) = q \]

Для любого начального вектора \(q(0)\) существует предел

\[\lim_{n \to \infty} q(n) = q \]

Это предел не зависит от \(q(0)\)

Пример. Рассмотрим следующую марковскую цепь.

125
Пусть $q(0)=(0;1)$. Тогда $q(0)=(0;1)$, $q(1)=(1;0)$, $q(2)=(1/2;1/2)$, $q(3)=(3/4;1/4)$, $q(4)=(5/8;3/8)$ …, $q(∞)=(2/3;1/3)$.
Пусть теперь $q(0)=(1;0)$. Тогда $q(1)=(1/2;1/2)$, $q(2)=(3/4;1/4)$, $q(3)=(5/8;3/8)$, …, $q(∞)=(2/3;1/3)$.
Рассмотрим ещё случай $q(0)=(2/5;3/5)$. Тогда $q(1)=(4/5;1/5)$, $q(2)=(3/5;2/5)$, $q(3)=(7/10;3/10)$, …, $q(∞)=(2/3;1/3)$.
Предел получается один и тот же. И действительно, эта цепь эргодична.

Пример. Рассмотрим следующую марковскую цепь.

Пусть $q(0)=(0;1)$. Тогда $q(0)=(0;1)$, $q(1)=(1;0)$, $q(2)=(0;1)$, $q(3)=(1;0)$, …
Предел не существует. Цепь не эргодична.

Пример. Рассмотрим следующую марковскую цепь.

Пусть $q(0)=(1;0;0)$. Тогда $q(1)=(1;0;0)$, $q(2)=(1;0;0)$, …, $q(∞)=(1;0;0)$
Пусть теперь $q(0)=(0;0;1)$. Тогда $q(∞)=(0;0;1)$
Предел зависит от $q(0)$, так что цепь не эргодична.

Пример (Алиса и Боб).

$q(0)=(0;0;1;0;0;0)$, $P=(…)$.
$q(1)=q(0)·P≈(0; 0,4; 0; 0,6; 0; 0)$
$q(3)=q(0)·P³≈(0,16; 0,19; 0; 0,43; 0; 0,36)$
$q(10)=q(0)·P^{10}≈(0,33; 0; 0,07; 0; 0,07; 0,53)$
$q(30)=q(0)·P^{30}≈(0,36; 0; 0; 0; 0,64)$
$q(∞)≈q(30)$

Замечание. При другом начальном векторе $q(0)=(0;0;1;0;0;0)$ получается $q(∞)=(0,62; 0;0;0;0; 0,38)$ – другие вероятности!
Замечание. Из предыдущей теоремы видно, что если предел $\lim_{n \to \infty} q(n) = q^*$ существует, то вектор q^* удовлетворяет уравнению $q^* \cdot P = q^*$.

Признак эргодичности

Теорема (признак эргодичности). Если для некоторого n все элементы матрицы $P(n)$ положительны, то марковская цепь с дискретным временем эргодична.

Более удобен другой признак. Прежде чем сформулировать его, введём несколько понятий.

Состояние E_j марковской цепи называется существенным, если куда бы мы ни ушли из него, всегда есть возможность вернуться.

Задача. Какие состояния следующей марковской цепи существенны?

Теорема. Если состояние E_j несущественно, то

$$\lim_{n \to \infty} q_j(n) = 0$$

Важную роль играют длины циклических путей в графе

Задача. Циклы какой длины есть в данном графе?

Ответ. 1, 2, 3, 4, …

Теорема (признак эргодичности). Марковская цепь с дискретным временем эргодична в том и только в том случае, если
1) из любого существенного состояния можно добраться до любого другого существенного, и
2) наименьший общий делитель длин всех циклических путей по существенным состояниям равен 1.

Задача. Эргодична ли цепь из предыдущего примера?
Задача. Эргодична ли эта марковская цепь?

Решение.
1) Существенные состояния E_1, E_2, E_3
2) Из любого существенного есть путь до любого существенного
3) Длины циклов по существенным состояниям: $2, 3$. НОД($2, 3$)=1.
 Следовательно, цепь эргодична

Задача (Алиса и Боб).

Проверить эргодичность при помощи признака.

Финальные вероятности
Если цепь эргодична, то для любого начального вектора $q(0)$ существует (одно и то же)
финальное распределение вероятностей $q^* = q(\infty)$:
$$q^* = \lim_{n \to \infty} q(n)$$

Смысл финального распределения вероятностей в том, что при $t \to \infty$ цепь Маркова входит в
устойчивый режим, который характеризуется следующими свойствами:
• среднее время пребывания в состоянии E_j за достаточно большое время T равно $q_j^* \cdot T$
• среднее время возвращения в состояние E_j равно $\frac{1}{q_j^*}$.

Как его найти?

Теорема. Если цепь эргодична, то q^* находится, как (единственное) решение системы
уравнений
\[
\begin{align*}
q^* \cdot P &= q^* \\
\sum q_j^* &= 1
\end{align*}
\]
Задача. Дана марковская цепь.

a) Эргодична ли эта цепь?
b) Если да, то найти финальное распределение вероятностей.

Решение. а) Существенные состояния – все.
Из любого существенного есть путь до любого существенного
Длины циклов по существенным состояниям: 2,3. НОД(2,3)=1.
Следовательно, цепь эргодична.
б) Матрица переходных вероятностей за 1 шаг:

\[
P = \begin{pmatrix}
0 & 1 & 0 \\
0,5 & 0 & 0,5 \\
1 & 0 & 0
\end{pmatrix}
\]

Система уравнений:

\[
q_1 + q_2 + q_3 = 1 \\
q_1 = q_2 \\
0,5q_2 + q_3 = q_1 \\
q_1 + q_2 + q_3 = 1
\]

Ответ: \(q^* = (..., ..., ...) \)

Задача. Кот Василий бывает в одном из трёх состояний: Спит (1), Ест (2), Гуляет (3).
Изменение состояния может происходить примерно раз в час.
Вероятности перехода: \(P_{11}=0,6, P_{12}=0,3, P_{21}=0,5, P_{23}=0,5, P_{32}=1 \).
Сколько в среднем часов в день Василий спит?

Решение. 1) Составьте граф этой цепи.
2) Проверьте на эргодичность.
3) Нас интересует поведение “в среднем”, то есть распределение вероятностей состояний за большой период времени. Другими словами, нужно найти \(q^* \).
Выпишите систему уравнений для нахождения q^*.

$$P = \begin{pmatrix} 0.6 & 0.3 & 0.1 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} \cdot \begin{pmatrix} 0.6 & 0.3 & 0.1 \\ 0.5 & 0 & 0.5 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix}$$

$$q_1 + q_2 + q_3 = 1$$

$$0.6q_1 + 0.5q_2 = q_1$$

$$0.3q_1 + q_3 = q_2$$

$$0.1q_1 + 0.5q_2 = q_3$$

$$q_1 + q_2 + q_3 = 1$$

$q^* \approx (0.435, 0.348, 0.217)$

Ответ: Василий спит в среднем 10 часов 26 минут в день

7.2 Марковские цепи с конечным множеством состояний и непрерывным временем

Основные понятия
Если система может переходить в другое состояние случайным образом в произвольный момент времени, то говорят о случайном процессе с непрерывным временем. В отсутствии последействия такой процесс называется непрерывной марковской цепью с непрерывным временем.

Описание марковской цепи с непрерывным временем:

- Цепь в каждый момент времени может находиться только в одном из состояний E_1, E_2, \ldots, E_n.
- Переходы из одного состояния в другое могут происходить в произвольные моменты времени t.
- Если система в момент времени t_0 находится в состоянии E_i, то вероятность оказаться в состоянии E_j в момент времени $t_0 + t$ не зависит от t_0 и равна $p_{ij}(t)$.
- Функция $p_{ij}(t)$ дифференцируема при $t=0$: $p_{ij}'(0)=a_{ij}$.

Числа a_{ij} при $i \neq j$ называются интенсивностями перехода из E_i в E_j.

На графе состояний системы численные значения a_{ij} ставят рядом со стрелками, показывающими переходы в вершины графа.
Свойства матрицы интенсивностей:

1) \(\sum_j p_{ij} = 1 \Rightarrow \sum_j a_{ij} = 0 \)

2) \(a_{ij} \geq 0 \) при \(i \neq j \)

3) \(a_{ii} \leq 0 \)

Число \(b_i = -a_{ii} \) называется интенсивностью выхода из \(E_i \)

Задача. Выписать матрицу интенсивностей для марковской цепи. (Петли не рисуются!)

\[
A = \begin{pmatrix}
-9 & 5 & 4 \\
2 & -2,5 & 0,5 \\
0 & 1 & -1
\end{pmatrix}
\]

Ответ.

Задача. Имеется 4 локомотива и 2 ремонтные бригады. Интенсивность поломок каждого локомотива примерно 1 раз в неделю. В случае поломки локомотив ремонтируется одной бригадой. Среднее время ремонта 5 дней. Нарисовать граф для этой марковской цепи.

Ответ.

Уравнения Колмогорова
Вектор вероятностей состояний

\[q = (q_1, q_2, ..., q_n) \]

Свойство вектора вероятностей состояний:

Сумма всех \(q_j \) равна 1

Теорема. Вектор вероятностей состояний \(q=q(t) \) удовлетворяет система уравнений Колмогорова

\[q' = q \cdot A \]
Задача. Сейчас система находится в E1 или E2 с равной вероятностью. Найти самое вероятное состояние в момент времени t=10.

Решение. q(0)=(0.5; 0.5; 0), q(10)=?

Матрица интенсивностей:
\[
A = \begin{pmatrix}
-1 & 1 & 0 \\
1 & -2 & 1 \\
1 & 2 & -3
\end{pmatrix}
\]

Уравнения Колмогорова
\[
q' = q \cdot A \Rightarrow \begin{pmatrix} q_1' \\ q_2' \\ q_3' \end{pmatrix} = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{pmatrix} \Rightarrow ...$

\[
\begin{aligned}
q_1' &= -q_1 + q_2 + q_3 \\
q_2' &= q_1 - 2q_2 + 2q_3 \\
q_3' &= q_2 - 3q_3 \\
1 &= q_1 + q_2 + q_3
\end{aligned}
\]

И ещё началное условие
\[
\begin{aligned}
q_1(0) &= 0.5 \\
q_2(0) &= 0.5 \\
q_3(0) &= 0
\end{aligned}
\]

Далее решаем систему уравнений.
1) Одно из уравнений (кроме последнего) выбрасываем.
\[
\begin{aligned}
q_1' &= -q_1 + q_2 + q_3 \\
q_2' &= q_1 - 2q_2 + 2q_3 \\
q_3' &= q_2 - 3q_3 \\
1 &= q_1 + q_2 + q_3
\end{aligned}
\]

2) Из последнего уравнения выражаем “выброшенное” q и подставляем в остальные
\[
\begin{aligned}
q_1' &= 1 - 2q_1 \\
q_3' &= 1 - q_1 - 4q_3
\end{aligned}
\]

3) Если в каком-то уравнении осталась одна неизвестная, решаем его. Если нет, то выражаем из одного уравнения неизвестную и подставляем в другое.
\[y' = 1 - 2y \Rightarrow y' + 2y = 1 \]

1) \[\lambda + 2 = 0 \Rightarrow \lambda = -2 \Rightarrow y_{00} = Ce^{-2t} \]

2) \[y_{\text{нач}} = A \Rightarrow A' + 2A = 1 \Rightarrow A = \frac{1}{2} \]

3) \[q_i = y_{00} + y_{\text{нач}} = \frac{1}{2} + Ce^{-2t} \]

4) Подставляем в оставшееся уравнение

\[q_3 = 1 - \frac{1}{2} - 4q_3 \]

\[y' + 4y = \frac{1}{2} \]

1) \[y' + 4y = 0 \]

\[\lambda + 4 = 0 \Rightarrow \lambda = -4 \Rightarrow y_{00} = C_1e^{-4t} \]

2) \[y' + 4y = \frac{1}{2} \]

\[y_{\text{нач}} = A_1 \]

\[(A_1)' + 4(A_1) = \frac{1}{2} \]

1) \[y' + 4y = 0 \]

\[\lambda + 4 = 0 \Rightarrow \lambda = -4 \Rightarrow y_{00} = C_1e^{-4t} \]

2) \[y' + 4y = \frac{1}{2} \]

\[y_{\text{нач}} = A_1 \]

\[(A_1)' + 4(A_1) = \frac{1}{2} \]

1) \[y' + 4y = 0 \]

\[\lambda + 4 = 0 \Rightarrow \lambda = -4 \Rightarrow y_{00} = C_1e^{-4t} \]

2) \[y' + 4y = \frac{1}{2} \]

\[y_{\text{нач}} = A_1 \]

\[(A_1)' + 4(A_1) = \frac{1}{2} \]

\[4A_1 = \frac{1}{2} \Rightarrow ... \]

\[A_1 = \frac{1}{8} \Rightarrow y_{\text{нач}} = \frac{1}{8} \]

\[q_3 = y = y_{\text{нач}} + y_{00} = C_1e^{-4t} + \frac{1}{8} \]

\[
\begin{cases}
q_1(0) = 0.5 \\
q_2(0) = 0.5 \\
q_3(0) = 0
\end{cases}
\]

\[q_2 = 1 - q_1 - q_3 = 1 - \frac{1}{2} - \frac{1}{8} - \frac{1}{4} - \frac{1}{8} = \frac{3}{8} + \frac{1}{4} - \frac{1}{8} = \frac{3}{8} + \frac{1}{4} - \frac{1}{8} = \frac{3}{8} + \frac{1}{4} - \frac{1}{8} \]

\[C_1 = \frac{1}{8} \Rightarrow q_3 = \frac{1}{8} - \frac{1}{8}e^{-4t} \]

Итак,

\[q(t) = (q_1, q_2, q_3) = \left(\frac{1}{2}, \frac{3}{8} + \frac{1}{4}e^{-4t}, \frac{1}{8} - \frac{1}{8}e^{-4t} \right) \]

Ответ: При \(t=10 \) наиболее вероятное состояние – E1

Эргодические цепи

Понятие эргодичности

Наибольший интерес обычно представляет поведение марковской цепи за большой период времени

Марковская цепь с непрерывным временем называется эргодической (или регулярной), если:

\[\bullet \] Для любого начального вектора \(q(0) \) существует предел \(\lim_{t \to \infty} q(t) = q^* \).

\[\bullet \] Это предел не зависит от \(q(0) \).

Признак эргодичности

133
Напоминание:

Состояние E_j марковской цепи называется существенным, если куда бы мы ни ушли из него, всегда есть возможность вернуться.

Теорема (признак эргодичности). Марковская цепь с непрерывным временем эргодична в том и только в том случае, если из любого существенного состояния можно добраться до любого другого существенного.

Финальные вероятности
Если цепь эргодична, то для любого начального вектора $q(0)$ существует (одно и то же) финальное распределение вероятностей $q^* = q(\infty)$:

$$q^* = \lim_{t \to \infty} q(t)$$

Как его найти?

Теорема. Если цепь эргодична, то q^* находится, как (единственное) решение системы уравнений

$$\begin{cases} q^* \cdot A = 0 \\ \sum q_j^* = 1 \end{cases}$$

Задача. Эргодична ли марковская цепь из предыдущего примера? Если да, то найти финальные вероятности.

Решение. 1) Существенные состояния E_1, E_2, E_3.
2) Из любого существенного есть путь до любого существенного
 Следовательно, цепь эргодична.
3) найдём финальные вероятности.
 $$A = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{pmatrix}$$

$$\begin{cases} q^* \cdot A = 0 \\ \sum q_j^* = 1 \end{cases} \Rightarrow \begin{cases} 0 = -q_1 + q_2 + q_3 \\ 0 = q_1 - 2q_2 + 2q_3 \\ 0 = q_2 - 3q_3 \\ 1 = q_1 + q_2 + q_3 \end{cases}$$

Ответ: $q^* = (4/8, \ 3/8, \ 1/8)$.

134
Замечание. Сравните этот ответ с

\[q(t) = (q_1, q_2, q_3) = \left(\frac{1}{2}, \frac{3}{8} + \frac{1}{8}e^{-4t}, \frac{1}{8} - \frac{1}{8}e^{-4t} \right) \]

7.3 Системы массового обслуживания

Основные понятия

Примеры: Парикмахерская, магазин, билетная касса, очередь автомобилей на светофоре, заготовки деталей на конвейере и т.п.

Обычно нас интересуют:
1) среднее время ожидания обслуживания;
2) средняя длина очереди;
3) среднее количество занятых каналов;
4) вероятность отказа в обслуживании и т.п.

Системы массового обслуживания (СМО) бывают очень разнообразны. Возможные различия:
- характеристики входящего потока заявок;
- количество каналов обслуживания;
- распределение времени обслуживания заявки;
- количество фаз обслуживания;
- наличие или отсутствие приоритетных заявок ("дисциплина обслуживания");
- характеристики очереди и т.п.

Мы рассмотрим только простые СМО с
1) пуассоновским ("простейшим") потоком заявок и
2) показательным временем обслуживания.

7.3.1 Пуассоновский поток заявок

I – интервал между заявками

Предполагается, что I – случайная величина, распределённая по показательному закону с параметром \(\lambda \).

\[P(I < t) = 1 - e^{-\lambda t} \]

Параметр \(\lambda \) – "интенсивность потока заявок" = среднее число заявок в единицу времени.

Средний интервал между заявками

135
7.3.2 Распределение времени обслуживания
S – продолжительность обслуживания одной заявки.
Предполагается, что S – случайная величина, распределённая по показательному закону с параметром μ:
\[P(S < t) = 1 - e^{-\mu t} \]
Параметр μ – "интенсивность обслуживания" = среднее число заявок, обслуживаемых в единицу времени
Средняя продолжительность обслуживания заявки
\[M_S = 1/\mu \]

7.3.3 Одноканальная СМО с неограниченной очередью

Входной поток заявок – пуассоновский с параметром λ.
Время обслуживания – показательное с параметром μ.
Один канал обслуживания.
Если канал занят, то пришедшая заявка ставится в очередь.
Размер очереди не ограничен.

Будем рассматривать такую СМО как марковскую цепь с непрерывным временем

Матрица интенсивностей:
\[A = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \cdots \\ \mu & -\lambda - \mu & \lambda & 0 & \cdots \\ 0 & \mu & -\lambda - \mu & \lambda & \cdots \\ 0 & 0 & \mu & -\lambda - \mu & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix} \]

Как правило, наиболее интересно поведение системы за большой период времени. То есть нас интересуют финальные вероятности.

\[q \cdot A = 0 \Rightarrow \begin{cases} -\lambda q_0 + \mu q_1 = 0 \\ \lambda q_0 - (\lambda + \mu) q_1 + \mu q_2 = 0 \\ \lambda q_1 - (\lambda + \mu) q_2 + \mu q_3 = 0 \\ \cdots \end{cases} \]

Отсюда получаем:
\[q_n = q_0 \cdot \left(\frac{\lambda}{\mu} \right)^n \]
Число $\rho = \frac{\lambda}{\mu}$ называется «загрузка системы»

Если $\rho \geq 1$, то в системе будет неограниченно расти очередь. Поэтому рассматривается случай $\rho < 1$

$$q_n = q_0 \cdot \rho^n$$

$$q_0 + q_1 + \ldots = 1 \Rightarrow q_0 \cdot (1 + \rho + \rho^2 + \ldots) = 1$$

$$q_0 \cdot \frac{1}{1 - \rho} = 1$$

Вероятность простоя системы

$$q_0 = 1 - \rho$$

Найдём другие характеристики этой СМО. Основные:

1. Средняя длина очереди ML.
2. Среднее количество заявок в системе Mn.
3. Среднее время ожидания обслуживания MW.

Средняя длина очереди

Пусть L – длина очереди. Это случайная величина, и надо найти её математическое ожидание ML.

<table>
<thead>
<tr>
<th>L</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$q_0 + q_1$</td>
<td>q_2</td>
<td>q_3</td>
<td>q_4</td>
<td>...</td>
</tr>
</tbody>
</table>

$$ML = 0 \cdot (q_0 + q_1) + 1 \cdot q_2 + 2 \cdot q_3 + \ldots = \rho + 2\rho^2 + 3\rho^3 + 4\rho^4 + \ldots$$

$$= \rho(1 + 2\rho + 3\rho^2 + \ldots) = \rho\left(\frac{\rho}{1 - \rho}\right)$$

Средняя длина очереди

$$ML = \frac{\rho^2}{1 - \rho}$$

Среднее число заявок в системе

Пусть n – число заявок в системе. Надо найти Mn.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>q_0</td>
<td>q_1</td>
<td>q_2</td>
<td>q_3</td>
<td>...</td>
</tr>
</tbody>
</table>

$$Mn = 0 \cdot q_0 + 1 \cdot q_1 + 2 \cdot q_2 + \ldots$$

$$Mn = \frac{\rho}{1 - \rho}$$

Среднее время ожидания обслуживания

Теорема (формула Литтла). Среднее время ожидания обслуживания равно произведению средней длины очереди на средний интервал времени между приходящими заявками.

$$MW = ML \cdot MI$$
Для рассматриваемой СМО:

$$MW = \frac{\rho^2}{\lambda \cdot (1 - \rho)}$$

7.3.4 Одноканальная СМО с ограниченной очередью

- Входной поток заявок – пуассоновский с параметром λ.
- Время обслуживания – показательное с параметром μ.
- Один канал обслуживания.
- Размер очереди не превосходит N.
- Если очередь заполнена, то пришедшая заявка отбрасывается.

Всё выводится аналогично

$$q_n = q_0 \cdot \rho^n, n = 1, 2, ..., N + 1$$

$$q_0 + q_1 + ... + q_{N+1} = 1 \Rightarrow q_0 \cdot (1 + \rho + \rho^2 + ... + \rho^{N+1}) = 1$$

$$q_0 = \begin{cases}
\frac{1 - \rho}{1 - \rho^{N+2}} npr \; \rho \neq 1 \\
\frac{1}{N + 2} npr \; \rho = 1
\end{cases}$$

Вероятность простой системы

$$q_{N+1} = q_0 \cdot \rho^{N+1}$$

Вероятность отказа в обслуживании

$$ML = \frac{\rho^2 (1 + N \rho^{N+1} - (N+1) \rho^N)}{(1 - \rho)\cdot(1 - \rho^{N+1})}$$

Средняя длина очереди

$$MW = ML \cdot MI = \frac{ML}{\lambda}$$

Среднее время ожидания обслуживания

7.3.5 Многоканальная СМО с неограниченной очередью

- Входной поток заявок – пуассоновский с параметром λ.
- m каналов обслуживания.
- Время обслуживания каждым каналом – показательное с параметром μ.
- Размер очереди не ограничен.

Всё аналогично.
Условие отсутствия перегрузки системы

\[
\frac{\rho}{m} < 1
\]

Вероятности состояний

\[q_n = q_0 \cdot \rho^n, \quad n = 1, 2, ..., m\]

\[q_n = q_0 \cdot \frac{\rho^n}{m!} \cdot \left(\frac{\rho}{m}\right)^{n-m}, \quad n = m+1, m+2, ...,\]

\[q_0 = \left(1 + \frac{\rho^1}{1!} + \frac{\rho^2}{2!} + \ldots + \frac{\rho^m}{m!} + \frac{\rho^{m+1}}{m! \cdot (m-\rho)}\right)^{-1}\]

Средняя длина очереди

\[
ML = q_0 \cdot \frac{\rho^m}{m!} \cdot \frac{\rho/m}{1 - (\rho/m)^2}
\]

Эквивалентная формула для средней длины очереди:

\[
ML = q_0 \cdot \frac{\rho^{m+1}}{(m-1)! \cdot (m-\rho)^2}
\]

Среднее число занятых каналов

\[Mr = \rho\]

Среднее число заявок в системе

\[Mn = ML + Mr\]

Среднее время ожидания обслуживания

\[MW = ML \cdot MI = q_0 \cdot \frac{\rho^{m+1}}{(m-1)! \cdot (m-\rho)^2} \cdot \frac{1}{\lambda}\]

Задача. Составы поступают на техобслуживание. В среднем поступает 3 поезда в час. Имеется две бригады. Среднее время обслуживания состава одной бригадой равно 30 минут. Найти среднее время ожидания обслуживания.

Решение. \(m = 2, \lambda = 3\) (поезда/час), \(\mu = 2\) (поезда/час)

\[\rho = \frac{\lambda}{\mu} = 1,5 < m\]

\[q_0 = \left(1 + \frac{\rho^1}{1!} + \frac{\rho^2}{2!} + \frac{\rho^3}{2! \cdot (m-\rho)}\right)^{-1} = \]

\[MW = \frac{1}{7} \cdot \frac{1,5^3}{1! \cdot (2-1,5)^2} \cdot \frac{1}{3} = 0,64(часа) \approx 39\text{мин}\]
7.4 Задачи.

Задача 1. В некоторой стране четыре больших города (А, Б, В, Г). Каждый год из А в Б переезжает 10% жителей, из А в Г – 20%, из Б в В 20%, из Б в Г 10%, из Б в А – 40%, из Г в А 10%, из Г в Б – 20%, остальные остаются на месте. В 1990 году в каждом городе было по 100 тыс. жителей. Общий прирост населения за счёт рождаемости незначителен.

• Сколько примерно жителей стало в каждом из городов в 1993 году?
• Эргодична ли соответствующая цепь?
• Сколько примерно жителей станет в каждом из городов в 2030 году, если сохранится тот же порядок вещей?

Задача 2. В ящике изначально лежат два неокрашенных шара. В моменты времени t=0,1,2,… наугад извлекается шар, окрашивается в красный или чёрный цвет и возвращается обратно. Если шар не был окрашен, то выбор цвета случаен, если был, то его перекрашивают в другой цвет.

• Составить график и заполнить матрицу переходных вероятностей этой марковской цепи.
• Эргодична ли соответствующая цепь?
• Если цепь эргодична, то найти финальное распределение вероятностей, иначе найти распределение наиболее вероятное состояние через 2 шага.

Задача 3. Игроки А и Б играют матч в шахматах. За победу в партии присуждается очко, за ничью ½ очка. А выигрывает у Б партию с вероятностью 0,3 и проигрывает с вероятностью 0,5. Когда кто-то набирает два очка, матч заканчивается.

• Составить график и заполнить матрицу переходных вероятностей этой марковской цепи.
• Эргодична ли соответствующая цепь?
• Если цепь эргодична, то найти финальное распределение вероятностей. Иначе найти наиболее вероятную ситуацию по окончании трёх партий.

Задача 4. Имеется стопка из трёх книг. Начальное их расположение – сверху лежит книга №1, под ней №2 и внизу №3. Первая книга может потребоваться с вероятностью 0,5, вторая с вероятностью 0,1, третья – с вероятностью 0,4. Если какая-то книга потребовалась, её достают из стопки и затем кладут наверх стопки. Считается, что требования могут происходить только в моменты времени t=1,2,3,…

• Составить график и заполнить матрицу переходных вероятностей этой марковской цепи.
• Эргодична ли соответствующая цепь?
• Если цепь эргодична, то найти финальное распределение вероятностей; если не эргодична, то найти наиболее вероятное состояние через 2 шага.

Задача 5. Играющий автомат. Чтобы получить приз, нужно выиграть две игры подряд. Вероятность выиграть первую игру равна 0,7, вторую – 0,5. В случае проигрыша всё начинается сначала, после выигрыша приза – тоже. Составить график этой марковской цепи и эргодична ли она?

Задача 6. В первом ящике изначально лежат два чёрных шара, во втором – три белых. В моменты времени t=1,2,3,… из каждого ящика наугад достают по шару и меняют их местами. Составить график и заполнить матрицу переходных вероятностей этой марковской цепи.

Задача 7. Бакалейный магазин работает с двумя кассами. Если число покупателей в магазине меньше трёх, то работает одна касса, иначе обе. Средний интервал между покупателями равен 6 минут, среднее время обслуживания у кассы – 12 минут. Нарисовать график марковской цепи и выяснить, эргодична ли она.
Задача 8. Дана Марковская цепь с непрерывным временем.
\(q(0)=(0,5; 0,5; 0; 0) \)
- Эргодична ли эта цепь?
- Если эргодична, то найти финальное распределение вероятностей.
- Составить систему уравнений Колмогорова.
- \(q(t)=? \)

Задача 9. Дана Марковская цепь с непрерывным временем,
\(q(0)=(0,5; 0,5; 0; 0) \)
- Эргодична ли эта цепь?
- Если эргодична, то найти финальное распределение вероятностей.
- Составить систему уравнений Колмогорова.

Задача 10. Дано: \(A_{12}=2, A_{23}=1, A_{31}=1 \).
Найти финальные вероятности состояний.
Составить систему уравнений Колмогорова.

Задача 11. В ремонтную мастерскую поступает пуассоновский поток заявок. Средний интервал между заявками 1 час. В мастерской работают два мастера. Первый справляется с заявкой в среднем за час, второй работает вдвое быстрее. Пришедшая заявка передаётся свободному мастеру. Если оба свободны, то любому с равной вероятностью. Если оба заняты, то заявка отбрасывается.
- Нарисовать граф этой марковской цепи и выписать матрицу интенсивностей.
- Эргодична ли эта цепь?
- Если эргодична, то найти финальное распределение вероятностей.

Задача 12. Поток машин, идущих по шоссе в одном направлении, представляет собой простейший поток с интенсивностью 4 машины в минуту. Человек выходит на шоссе, чтобы остановить первую попавшуюся машину, идущую в данном направлении.
- Найти закон распределения времени ожидания.
- Определить математическое ожидание и среднее квадратичное отклонение.

Задача 13. На вокзал прибывает пуассоновский поток поездов, в среднем 3 поезда за 10 минут. Найти вероятность того, что за 30 минут прибудут ровно 4 поезда.

Задача 14. На железнодорожной станции находятся три кассы для продажи билетов на поезд дальнего следования. Когда все кассы заняты, пассажиры стоят в очередь. Среднее время обслуживания в одной кассе составляет 5 минут. Пассажиры приходят в кассы в среднем тридцать человек за час.
- Найти среднее время ожидания обслуживания и
- Найти среднюю длину очереди.
- Найти вероятность просто касс.
Задача 15. Железнодорожный пропускной таможенный пункт состоит из трех линий досмотра. Время досмотра одного железнодорожного состава на линии досмотра в среднем составляет 3 часа. Интенсивность прибывающих составов составляет 1 состав в час.
- Найти вероятность простоя таможенного пункта.
- Найти среднее число досматриваемых и ожидающих досмотра составов.

Задача 16. В офисе фирмы установлен сетевой принтер, скорость печати которого составляет в среднем 5 страниц в минуту. Среднее время между запросами на печать составляет 2 минуты. Средний размер печатаемого документа равен 10 страницам. Печать начинается сразу после поступления задания.
- Найти среднюю длину очереди на печать.
- Найти среднее время ожидания печати.
- Найти вероятность простой принтера.

Задача 17. На станции имеется три пути для обслуживания прибывающих железнодорожных составов. Приходят в среднем 10 составов в час. Среднее время обслуживания одного состава 15 минут. Найти вероятность простая системы и среднее время обслуживания состава.

Задача 18. Почтовое отделение имеет два обслуживющихся окна. Клиенты прибывают с интенсивностью 1 клиент за три минуты. Однако только 80% из них нуждаются в обслуживании возле окон. Время обслуживания подчиняется показательному закону со средним 5 минут. Очередь общая. Нарисовать граф этой цепи и найти вероятность того, что оба окна свободны.

Задача 19. Ресторан быстрого питания имеет один пункт обслуживания, где клиенты обслуживаются, не выходя из машины. Машины прибывают с интенсивностью 2 клиента за каждые 5 мин. Среднее время обслуживания 1,5 мин. Возле пункта обслуживания может располагаться не более 10 машин. Нарисовать граф и найти вероятность того, что пункт свободен.

Задача 20. По автодороге мимо автозаправочной станции движется в одном направлении простейший поток автомобилей. Известно, что вероятность отсутствия автомобилей в течение 30 минут равна 0,1. Найти вероятность того, что за 20 мин проедет не более двух автомобилей.
Литература

1. Акулич И.Л., Математическое программирование в примерах и задачах: Учебное пособие для вузов. – М.Высшая школа ,1986.
5. Г.П. Фомин. Математические методы и модели в коммерческой деятельности. Москва.
Св. план 2011г., поз. 278

Исследование операций
Под редакцией Кочневой Л.Ф. и Хаханяна В.Х.
Учебное пособие

Подписано в печать Формат Тираж 100 экз.
Усл.- печ. л. Заказ №

127994 Москва, ул. Образцова, 9, стр. 9.
Типография МИИТа.